Flood Risk Assessment Using GIS Modelling and Remotely Sensed Data: A Case Study of Al-Kut, Wasit Governorate, Iraq

  • سال انتشار: 1401
  • محل انتشار: سومین کنفرانس بین المللی و ششمین کنفرانس ملی صیانت از منابع طبیعی و محیط زیست
  • کد COI اختصاصی: CNRE06_124
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 344
دانلود فایل این مقاله

نویسندگان

Hossein Etemadfard

Assistant Professor, Civil Engineering Department, Ferdowsi University of Mashhad, Iran

Ali Hamid Imran Huseeni

M.Sc. Student, Civil Engineering Department, Ferdowsi University of Mashhad, Iran

Rouzbeh Shad

Associate Professor, Civil Engineering Department, Ferdowsi University of Mashhad, Iran

Marjan Ghaemi

Visiting Professor, Civil Engineering Department, Ferdowsi University of Mashhad, Iran

چکیده

This study aimed to use remote sensing datasets and machine learning approaches to assess risk of floods in Al-Kut, Wasit governorate, Iraq. The flood event that happened on November ۲۶, ۲۰۱۸ in Al-Kut city used as the case study for this study. First, an inventory flood map with a total of ۱۴۴ samples was generated based on a flood reference map given by SERTIT for the research area. Second, six flood conditioning factors, including altitude, aspect, slope, curvature, land cover, and distance from water bodies, were prepared for flood susceptibility assessment. Third, the relationship between flood conditioning factors and flood events in the research area was established using a logistic regression (LR) for flood spatial prediction. Then, monthly rainfall data from ۲۰۱۳ to ۲۰۱۷ were collected and analyzed using effective accumulation maximum for flood hazard assessment. Flood vulnerability was first evaluated using vulnerability indicators such as population density and land use for flood risk assessment. Finally, the Receiver Operating Characteristic (ROC) curve and the area under the ROC curve, known as the AUROC, were used to evaluate flood susceptibility models. The flood susceptibility model's validation accuracy using LR was ۰.۶۳ Precision, ۰.۶۲ Recall, ۰.۶۲ F۱-score, and ۰.۶۲۵ AUROC. When it comes to risk assessments, residential and agricultural areas are the most vulnerable (bare land and water body). The majority of the study area is at extremely low risk of flooding, according to the results (۳۴.۸۵ percent). Only ۹.۸۷ percent and ۱.۷۹ percent of the area, respectively, are at high and extremely high risk.

کلیدواژه ها

Flood susceptibility, Logistic regression, Sentinel, Wasit province

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.