ارزیابی تاثیر اندازه های آموزشی بر دقت الگوریتم SVM در طبقه بندی داده های ابرطیفی
- سال انتشار: 1386
- محل انتشار: همایش ژئوماتیک 86
- کد COI اختصاصی: GEO86_132
- زبان مقاله: فارسی
- تعداد مشاهده: 2262
نویسندگان
دانشجوی کارشناسی ارشد سنجش از دور
عضو هیئت علمی دانشگاه صنعتی خواجه نصیرالدین طوسی
عضو هیئت علمی دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده
بدلیل پدیده هاف در طبقه بندی داده های ابر طیفی، طبقه بندی کننده های معمولی به تعداد نمونه های آموزشی زیادی نیاز دارند و معمولا نتایج رضایت بخشی بدست نمی آورند. در بسیاری از موارد جمع آوری حجم زیاد مورد نیاز از داده ها مشکل و غیر ممکن است. برای بهبود دقت طبقه بندی، با حجم داده های آموزشی کم، اخیرا روش Support Vector Machines (SVMs) مبتنی بر خواص هندسی داده ها توسط محققین پیشنهاد شده است. در این تحقیق، کارایی و حساسیت SVM به تعداد نمونه های آموزشی کم در مقایسه با طبقه بندی کننده K-Nearest Neighbor (KNN) ارزیابی شده است. داده های ابر طیفی استفاده شده در این تحقیق بوسیله سنجنده Airborne Visible/Infrared Imaging Spectroradiometer (AVIRIS) در ژوئن 1992 در منطقه Indian Pines (Indiana) که شامل انواع مختلف پوشش گیاهی است اخذ شده است. نتایج این تحقیق نشان می دهد که در همه موارد مورد آزمایش با تعداد نمونه های آموزشی مختلف، دقت طبقه بندی به روش SVM بطور قابل توجه ای بیشتر از روش KNN می باشد. بنابراین استفاده از SVM می تواند بعنوان یک راه حل برای مسئله تعداد نمونه های آموزشی برای حصول دقت مناسب در طبقه بندی داده های ابر طیفی مورد توجه قرار گیرد.کلیدواژه ها
تصاویر ابر طیفی Support Vector Machines (SVM) ، سنجش از دور ، پدیده هافاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.