An improvement in integrating clustering method and neural network to extract rules and application in diagnosis support

  • سال انتشار: 1401
  • محل انتشار: مجله سیستم های فازی، دوره: 19، شماره: 5
  • کد COI اختصاصی: JR_IJFS-19-5_011
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 256
دانلود فایل این مقاله

نویسندگان

V. D. Minh

University of Industry, ۲۹۸ Cau Dien street, Bac Tu Liem District, Hanoi, Viet Nam

T. T. Ngan

Faculty of Computer Science and Engineering, Thuyloi University, ۱۷۵ Tay Son, Dong Da, Hanoi, Vietnam

T. M. Tuan

Faculty of Computer Science and Engineering, Thuyloi University, ۱۷۵ Tay Son, Dong Da, Hanoi, Vietnam

V. T. Duong

University of Industry, ۲۹۸ Cau Dien street, Bac Tu Liem District, Hanoi, Viet Nam

N. T. Cuong

University of Industry, ۲۹۸ Cau Dien street, Bac Tu Liem District, Hanoi, Viet Nam

چکیده

Most of chronic liver diseases without suitable treatment will lead to cirrhosis of the liver, eventually progressing to liver cancer. Thus, early diagnosis is very important in detecting the liver diseases and suggesting the treatment at the right time. A useful model that effectively predicts the patient's liver fibrosis has great importance in reducing the load on doctors, especially in lower-level hospitals. In this paper, a new model combining semi-supervised learning method and fuzzy min max neural network with selective fuzzy rule set rendering is proposed. Cirrhosis level is evaluated by APRI and FIB-۴. The proposed method is experimented on data sets from machine learning databases, including UCI and CS. Apart from that, our method is also implemented on the liver data set collected from the hospitals of Thai Nguyen province. The comparison among our proposed method and other related ones is also given. The obtained results show that our proposed model has better performance than compared methods in terms of execution time and the number of rules.

کلیدواژه ها

Artificial neural network, semi-supervised clustering, chronic liver diseases, liver disease diagnosis, cirrhosis

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.