Comparing Prediction Power of Artificial Neural Networks Compound Models in Predicting Credit Default Swap Prices through Black–Scholes–Merton Model

  • سال انتشار: 1399
  • محل انتشار: مجله ایرانی مطالعات مدیریت، دوره: 13، شماره: 1
  • کد COI اختصاصی: JR_JIJMS-13-1_004
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 238
دانلود فایل این مقاله

نویسندگان

اصغر بیت اللهی

Department of Accounting, Islamic Azad University of Kerman Branch, Iran

حدیث زینلی

Department of Accounting, Islamic Azad University of Kerman Branch, Iran

چکیده

Default risk is one of the most important types of risks, and credit default swap (CDS) is one of the most effective financial instruments to cover such risks. The lack of these instruments may reduce investment attraction, particularly for international investors, and impose potential losses on the economy of the countries lacking such financial instruments, among them, Iran. After the ۲۰۰۷ financial crisis, the importance of CDS has increasingly augmented because theoretically and practically, this instrument could significantly prevent catastrophes such as the mentioned crisis. The present study seeks to predict the price of CDS contracts with the Merton model as well as the compound neural network models including ANFIS, NNARX, AdaBoost, and SVM regression, and compare the predictive power of these algorithms which are among the most prestigious, intelligent models in finance. The research statistical population includes the A-rated North American and European companies which are known as the reference entities for credit default swaps. Data were collected from the Bloomberg Terminal for an eight-year period from ۲۰۰۸ to ۲۰۱۵. Contracts of ۱۲۵ companies were selected as the statistical sample. The results reveal that the average predictive power of the NNARX is higher than that of other algorithms under scrutiny.

کلیدواژه ها

Derivative Financial Instruments, ANFIS, NNARX, AdaBoost, Support Vector Machine Regression

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.