Diabetes diagnosis using machine learning

  • سال انتشار: 1400
  • محل انتشار: مجله پیشگامان انفورماتیک سلامت، دوره: 10، شماره: 1
  • کد COI اختصاصی: JR_IJIMI-10-1_013
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 318
دانلود فایل این مقاله

نویسندگان

Boshra Farajollahi

Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran

Maysam Mehmannavaz

Doornama Company, Data Science lab, Ilam, Iran

Hafez Mehrjoo

Doornama Company, Data Science lab, Ilam, Iran

Fatemeh Moghbeli

PhD of Medical Informatics, Assistant Professor, Department of HIT, Varastegan Institute for Medical Sciences, Mashhad, Iran

Mohammad Javad Sayadi Manghalati

Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran

چکیده

Introduction: Diabetes is a disease associated with high levels of glucose in the blood. Diabetes make many kinds of complications, which also leads to a high rate of repeated admission of patients with diabetes. The aim of this study is to diagnose Diabetes with machine learning techniques.Material and Methods: The datasets of the article contain several medical predictor variables and one target variable, Outcome. Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age. The main objective of the machine learning models is to classify of the diabetes disease.Results: Six classifiers have been also adapted and compared their performance based on accuracy, F۱-score, recall, precision and AUC. And Finally, Adaboost has the most accuracy ۸۳%.Conclusion: In this paper a performance comparison of different classifier models for classifying diagnosis is done. The models considered for comparison are logistic regression, Decision Tree, support vector machine (SVM), xgboost, Random Forest and Adaboost. Finally, in the comparison flow, Adaboost, Logistic Regression, SVM and Random Forest, usually has had a high amount; and their amounts has little differences normally.

کلیدواژه ها

Diagnosis, Diabetes, Machine Learning

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.