Developing an Apnea/Hypopnea Diagnostic Model Using SVM
- سال انتشار: 1400
- محل انتشار: مجله پیشگامان انفورماتیک سلامت، دوره: 10، شماره: 1
- کد COI اختصاصی: JR_IJIMI-10-1_001
- زبان مقاله: انگلیسی
- تعداد مشاهده: 237
نویسندگان
Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
Professor, Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
Occupational Sleep Research Center, Tehran University of Medical Sciences, Tehran, Iran
چکیده
Introduction: Among sleep-related disorders, Sleep apnea has been under more attention and it’s the most common respiratory disorder in which respiration ceases frequently which can lead to serious health disorders and even mortality. Polysomnography is the standard method for diagnosing this disease at the moment which is costly and time-consuming. The present study aimed at analyzing vital signals to diagnose Sleep apnea using machine learning algorithms.Material and Methods: This analytical–descriptive was conducted on ۵۰ patients (۱۱ normal, ۱۳ mild, ۱۷ moderate and ۹ severe patients) in the sleep clinic of Imam Khomeini hospital. Initially, data pre-processing was carried out in two steps (noise elimination and moving average algorithm). Next, using the singular value decomposition method, ۱۲ features were extracted for airflow. Finally, to classify data, SVM with quadratic, polynomial and RBF kernels were trained and tested.Results: After applying different kernel functions on SVM, the RBF kernel showed the most efficient performance. After ۱۰ fold cross validation method for evaluation, the mean accuracy obtained for normal, apnea, and hypopnea modes were ۹۲.۷۴%, ۹۱.۷۰%, ۹۳.۲۶%.Conclusion: The results show that in online applications or applications where the volume and time of calculations and at the same time the accuracy of the result is very important, The disease can be diagnosed with acceptable accuracy using machine learning algorithms.کلیدواژه ها
Sleep Apnea, SVM Algorithm, Polysomnography, Airflowمقالات مرتبط جدید
- نقش هوش مصنوعی در شخصی سازی آموزش و یادگیری دانش آموزان متوسطه اول و چالش های پیاده سازی آن
- بازسازی هویت اخلاقی در عصر مجازی: تاثیر شبکه های اجتماعی بر شکل گیری ارزش های اخلاقی دانش آموزان متوسطه
- A Systematic Review of the Effects of Mindfulness-Based Cognitive Therapy on the Reduction of Psychosomatic Symptoms in Chronic Patients
- Meta-Analysis of Psychological Interventions for Reducing Aggression in Adolescents in School Environment
- Effectiveness of Mixed Reality (XR)-Based Interventions in Improving Social Cognition in Children with Level ۱ Autism
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.