طراحی مدلی جهت پیش بینی بازده قیمت جهانی طلا (با تاکید بر مدل های ترکیبی شبکه عصبی کانولوشنی و مدل های خانواده گارچ)

  • سال انتشار: 1401
  • محل انتشار: مجله مهندسی مالی و مدیریت اوراق بهادار، دوره: 13، شماره: 50
  • کد COI اختصاصی: JR_FEJ-13-50_004
  • زبان مقاله: فارسی
  • تعداد مشاهده: 319
دانلود فایل این مقاله

نویسندگان

محمد جواد بختیاران

گروه علوم اقتصادی، دانشکده مدیریت و اقتصاد ، دانشگاه تربیت مدرس، تهران، ایران

مهدی ذوالفقاری

گروه علوم اقتصادی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

چکیده

این مقاله به معرفی مدل هایی از ترکیب خانواده GARCH و شبکه عصبی کانولوشنی، جهت پیش بینی بازدهی روزانه طلای جهانی طی فاصله زمانی ۱۳۹۸-۱۳۹۰ می پردازد. در این پژوهش از مدل های دارای حافظه کوتاه مدت GARCH و EGARCH استفاده می شود. علاوه بر بکارگیری مدل های حافظه کوتاه مدت، با توجه به کارایی مدل های ترکیبی خانواده GARCH (در مقایسه با مدل های فردی) در پیش بینی داده های مالی، در این مطالعه، تمامی مدل های خانواده GARCH با شبکه عصبی کانولوشنی ترکیب شده و با استفاده از مدل های ترکیبی بازده طلا پیش بینی شده است . وهمچنین پیش بینی به صورت ده گام به جلو بوده است. نتایج تحقیق حاکی از برتری مدل پیشنهادی نسبت به مدل های جاری در پیش بینی سری زمانی بازدهی قیمت طلا بود. همچنین براساس معیارهای ارزیابی خطای پیش بینی RMSE و MAPE، مدل CNN-EGARCH برپایه توزیع نرمال دارای خطای پیش بینی کمتری نسبت به ۲۳ مدل دیگر دارد. در این راستا، معیار بررسی صحت پیش بینی دیبولد-ماریانو (DM) نیز یافته های فوق را تایید میکند.

کلیدواژه ها

طلا, پیش بینی, خانواده GARCH, شبکه عصبی کانولوشنی, مدل ترکیبی

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.