Comparing the Capabilities of Artificial Neural Networks Regression Models in Wheat Yield Prediction
- سال انتشار: 1401
- محل انتشار: دهمین کنفرانس بین المللی علوم صنایع غذایی،کشاورزی ارگانیک و امنیت غذایی
- کد COI اختصاصی: FSACONF10_077
- زبان مقاله: انگلیسی
- تعداد مشاهده: 297
نویسندگان
MSc student, Dept. of Geomatics Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
Assistant professor, Dept. of Geomatics Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
Associate professor, Dept. of Geomatics Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
چکیده
The yield of the wheat crop is affected by the climate and soil parameters such as moisture and nutrients, plant pests and diseases. In this paper, the capabilities of various architectures of artificial neural networks such as Linear Neural Network (LNN), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF) and Generalized Regression Neural Network (GRNN) are investigated for wheat yield prediction based on remotely sensed images.The effects of vegetation condition, moisture, nutrients and pests on wheat yield are represented by spectral indices those are extracted from remotely sensed data. The experimental results for wheat yield prediction are evaluated in eight fields in Kurdistan, Iran. The obtained difference errors between actual and predicted wheat yields show the capabilities of the GRNN regression model with a mean error of ۰.۰۰۶۱. Moreover, using RMSE and MAE for evaluating the regression models indicates that the GRNN regression model has the best prediction results with RMSE=۰.۰۰۷۵ and MAE=۰.۰۰۶۳ compared to the RBF, LNN and MLP models.کلیدواژه ها
Yield prediction, Wheat, Neural Network, Spectral Indicesمقالات مرتبط جدید
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.