Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

  • سال انتشار: 1393
  • محل انتشار: مجله بین المللی ابعاد نانو، دوره: 5، شماره: 1
  • کد COI اختصاصی: JR_IJND-5-1_007
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 281
دانلود فایل این مقاله

نویسندگان

M. Sahooli

Nano Chemical Eng. Dep., Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

S. Sabbaghi

Nano Chemical Eng. Dep., Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

R. Maleki

Nano Chemical Eng. Dep., Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

M. M. Nematollahi

School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.

چکیده

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learning models were proposed to represent the thermal conductivity as a function based on the temperature, nanoparticles volume fraction and the thermal conductivity of the nanoparticles. The results of models were in appropriate agreement with the experimental data. This work represents ۸ machine learning models for the predicting the thermal conductivity of water-based nanofluids. The models have been trained and tested on two separate sets of data. Three metrics have been employed to evaluate the performance of the models. The best method for each system is selected using results.

کلیدواژه ها

Nanofluids, Modeling, Machine Learning, Thermal conductivity, prediction

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.