Introducing a New Hybrid Adaptive Local Optimal Low Rank Approximation Method for Denoising Images
- سال انتشار: 1399
- محل انتشار: مجله الکترونیک صنعتی ،کنترل و بهینه سازی، دوره: 3، شماره: 2
- کد COI اختصاصی: JR_IECO-3-2_007
- زبان مقاله: انگلیسی
- تعداد مشاهده: 189
نویسندگان
Department of Electrical Engineering,Control Group,Tafresh University
Department of Electrical Engineering,Control Group,Tafresh University
Department of Electrical Engineering,Control Group,Tafresh University
چکیده
This paper aimed to formulate image noise reduction as an optimization problem and denoise the target image using matrix low rank approximation. Considering the fact that the smaller pieces of an image are more similar (more dependent) in natural images; therefore, it is more logical to use low rank approximation on smaller pieces of the image. In the proposed method, the image corrupted with AWGN (Additive White Gaussian Noise) is locally denoised, and the optimization problem of low rank approximation is solved on all fixed-size patches (Windows with pixels needing to be processed). This method can be implemented in parallelly for practical purposes, because it can simultaneously handle different image patches. This is one of the advantages of this method. In all noise reduction methods, the two factors, namely the amount of the noise removed from the image and the preservation of the edges (vital details), are very important. In the proposed method, all the new ideas including the use of TI image (Training Image) and SVD adaptive basis, iterability of the algorithm and patch labeling have all been proved efficient in producing sharper images, good edge preservation and acceptable speed compared to the state-of-the-art denoising methods.کلیدواژه ها
Optimal Low Rank Approximation, SVD, Signal Denoising, Image Denoising, Signal Processingاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.