Two Efficient Ternary Adder Designs Based On CNFET Technology
محل انتشار: مجله مهندسی کامپیوتر و دانش، دوره: 4، شماره: 1
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 156
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CKE-4-1_003
تاریخ نمایه سازی: 25 خرداد 1401
چکیده مقاله:
Full adder is one of the essential circuits among the various processing elements used in VLSI and other technologies circuits, because they are mainly employed in other arithmetic circuits, such as multi-digit adders, subtractors, and multipliers. This paper proposes two efficient ternary full adders based on Carbon Nanotube Field-Effect Transistor (CNFET) technology. Using the adjustable nanotube diameter in CNFETs, these adders utilize arbitrary threshold voltages so that arithmetic operations can be performed with a radix of ۳. For performance analysis, the proposed adder circuits are simulated in HSPICE with ۳۲nm CNFET technology. In these simulations, different inputs are applied at different frequencies with different load capacitances placed at the output. Simulation results have shown that the proposed adders not only improve the speed, power consumption, and Power Delay Product (PDP) of the existing state-of-the-art designs but also improve the design complexity by reducing the number of transistors contained within the circuit.
کلیدواژه ها:
نویسندگان
Masoud Mahjoubi
Computer engineering department, Amirkabir university of technology, Gramsar campus, Garmsar, Iran
Morteza Dadashi
Computer engineering department, Amirkabir university of technology, Gramsar campus, Garmsar, Iran
Kooroush Manochehri
Computer engineering department, Amirkabir university of technology, Garmsar campus, Garmsar, Iran
Saadat Pourmozafari
Computer engineering department, Amirkabir university of technology, Gramsar campus, Garmsar, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :