Colorectal cancer driver gene detection in human gene regulatory network using independent cascade diffusion model
- سال انتشار: 1400
- محل انتشار: اولین کنفرانس ملی سیستم های پیچیده با محوریت علم شبکه
- کد COI اختصاصی: CSANS01_024
- زبان مقاله: انگلیسی
- تعداد مشاهده: 330
نویسندگان
Department of Computer and Information Technology Payame Noor University (PNU) P.O. Box, ۱۹۳۹۵-۳۶۹۷, Tehran, Iran
Department of Information Technology Engineering, School of Systems and Industrial Engineering Tarbiat Modares University (TMU) Tehran, Iran
Department of Data Science Tarbiat Modares University (TMU) Tehran, Iran
Department of Mathematics Islamic Azad University, Shahrood branch Shahrood, Iran
چکیده
one of the important topics in oncology for treatment and prevention is the identification of genes that initiate cancer in cells. These genes are known as cancer driver genes (CDG). Identifying driver genes is important both for a basic understanding of cancer and for helping to find new therapeutic goals or biomarkers. Several computational methods for finding cancer driver genes have been developed from genome data. However, most of these methods find key mutations in genomic data to predict cancer driver genes. These methods are dependent on mutation and genomic data and often have a high rate of false positives in the results. In this study, we proposed a network-based method, GeneIC, which can detect cancer driver genes without the need for mutation data. In this method, the concept of influence maximization and the independent cascade model is used. First, a cancer gene regulatory network was created using regulatory interactions and gene expression data. Then we implemented an independent cascade propagation algorithm on the network to calculate the coverage of each gene. Finally, the genes with the highest coverage were introduced as driver genes. The results of our proposed method were compared with ۱۹ previous computational and network methods based on F-measure metric and the number of detected drivers. The results showed that the proposed method has a better outcome than other methods. In addition, more than ۲۵.۴۹% of the driver genes reported by * Corresponding author. Room No. ۲۱۰, ۲nd Floor, Information Technology Engineering group, School of Systems and Industrial Engineering, Tarbiat Modares University (TMU) Chamran/Al-e-Ahmad Highways Intersection, Tehran, P.O. Box ۱۴۱۱۵-۱۱۱, Iran. GeneIC are new driver genes that have not been reported by any other computational method.کلیدواژه ها
Gene regulatory network; Driver genes; Influence maximization; cancer; Independent Cascade;مقالات مرتبط جدید
- سودآوری مشتریان در خردهفروشی قطعات یدکی ماشین آلات راهسازی با رویکرد یادگیری ماشین
- ارائه روشی کارآمد جهت شناسایی کودکان نیازمند به پیوند مغز استخوان با استفاده از ترکیب طبقه بند ماشین بردار پشتیبان و الگوریتم بهینه سازی فاخته
- استخراج بهینه پارامترهای تاثیر گذار الگوریتم بهینه سازی بوفالوی آفریقایی با هدف استخراج ویژگی های مهم به منظور افزایش کارایی طبقه بندی داده ها
- ارائه روشی کارآمد برای بهبود عملکرد الگوریتم بهینه سازی کلاغ سیاه به منظور افزایش صحت خوشه بندی داده ها
- استفاده از الگوریتم باور بیزین در لایه کاملا متصل شبکه عصبی کانولوشن با هدف افزایش دقت تشخیص تصاویر
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.