Hierarchical Risk Parity as an Alternative to Conventional Methods of Portfolio Optimization: (A Study of Tehran Stock Exchange)

  • سال انتشار: 1400
  • محل انتشار: مجله مالی ایران، دوره: 5، شماره: 4
  • کد COI اختصاصی: JR_IJFIFSA-5-4_001
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 302
دانلود فایل این مقاله

نویسندگان

Marziyeh Nourahmadi

Ph.D. Candidate in Financial Engineering, Faculty of Economic, Management and Accounting, Yazd University, Yazd, Iran.

Hojjatollah Sadeqi

Assistant Prof., Department of Accounting and Finance, Faculty of Humanities and Social Sciences, Yazd University, Yazd, Iran.

چکیده

One of the most critical investment issues faced by different investors is choosing an optimal investment portfolio and balancing risk and return in a way that, maximizes investment returns and minimize the investment risk. So far, many methods have been introduced to form a portfolio, the most famous of the Markowitz approach. The Markowitz mean-variance approach is widely known in the world of finance and, it marks the foundation of every portfolio theory. The mean-variance theory has many practical drawbacks due to the difficulty in estimating the expected return and covariance for different asset classes. In this study, we use the Hierarchical Risk Parity (HRP) machine learning technique and compare the results with the three methods of Minimum Variance (MVP), Uniform Distribution (UNIF), and Risk Parity (RP). To conduct this research, the adjusted price of ۵۰ listed companies of the Tehran Stock Exchange for ۲۰۱۸-۰۷-۰۱ to ۲۰۲۰-۰۹-۲۹ has been used. ۷۰% of the data are considered as in-sample and the remaining ۳۰% as out-of-sample. We evaluate the results using four criteria: Sharp, Maximum Drawdown, Calmer, Sortino. The results show that the MVP and, UNIF approach within the in-sample and, the UNIF and HRP approach out-of-sample have the best performance in sharp measure.

کلیدواژه ها

Hierarchical Risk Parity, Machine Learning, portfolio optimization, Minimum variance

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.