برآورد مقدار بخار آب قابل بارش (PWV) با استفاده از روش های مبتنی بر یادگیری در منطقه شمال غرب ایران

  • سال انتشار: 1400
  • محل انتشار: فصلنامه اطلاعات جغرافیایی ( سپهر)، دوره: 30، شماره: 120
  • کد COI اختصاصی: JR_SEPEHR-30-120_008
  • زبان مقاله: فارسی
  • تعداد مشاهده: 317
دانلود فایل این مقاله

نویسندگان

سید رضا غفاری رزین

استادیار، گروه مهندسی نقشه برداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک

نوید هوشنگی

استادیار، گروه مهندسی نقشه برداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک

چکیده

در این مقاله با استفاده از روش های مبتنی بر یادگیری مقدار بخار آب قابل بارش (PWV) به صورت مکانی-زمانی مدل سازی شده و سپس پیش بینی می شود. از سه مدل شبکه های عصبی مصنوعی (ANNs)، سیستم استنتاج عصبی-فازی سازگار (ANFIS) و مدل رگرسیون بردار پشتیبان (SVR) برای انجام این کار استفاده شده است. برای مقایسه کارایی و دقت این سه مدل، نتایج حاصل با مشاهدات بخار آب قابل بارش حاصل از ایستگاه رادیوسوند (PWVradiosonde) و بخار آب قابل بارش به دست آمده از مدل تجربی ساستامنین (PWVSaastamoinen) نیز مقایسه شده است. مشاهدات ۲۳ ایستگاه GPS مابین روزهای ۳۰۰ الی ۳۰۵ (۶ روز) از سال ۲۰۱۱ در منطقه شمال غرب ایران برای ارزیابی مدل ها، به کار گرفته شده است. دلیل انتخاب این منطقه و بازه زمانی مورد نظر، در دسترس بودن مجموعه کاملی از مشاهدات ایستگاه های GPS، رادیوسوند و ایستگاه های هواشناسی است. از ۲۳ ایستگاه مورد نظر، مشاهدات دو ایستگاه KLBR و GGSH به منظور انجام تست نتایج حاصل کنار گذاشته می شود. در مرحله اول، تاخیر تر زنیتی (ZWD) از مشاهدات ۲۱ ایستگاه GPS محاسبه و سپس تبدیل به مقدار PWV می شود. مقادیر PWV حاصل از این مرحله به عنوان خروجی هر سه مدل در نظر گرفته شده است. همچنین چهار پارامتر طول و عرض جغرافیایی ایستگاه، روز مشاهده (DOY) و زمان (min.) به عنوان ورودی های سه مدل هستند. هر سه مدل با استفاده از الگوریتم پس انتشار خطا (BP) آموزش داده شده و کمینه خطای حاصل در محل ایستگاه رادیوسوند تبریز (۳۸/۰۸N وE۴۶/۲۸)، به عنوان معیار پایان آموزش در نظر گرفته شده است. پس از مرحله آموزش، مقدار بخار آب قابل بارش در ایستگاه های تست با هر سه مدل محاسبه و سپس با مقدار بخار آب قابل بارش حاصل از GPS (PWVGPS) مقایسه می شوند. میانگین ضریب همبستگی محاسبه شده برای چهار مدل ANN، ANFIS، SVR و Saastamoinen در ۶ روز مورد مطالعه به ترتیب برابر با ۰/۸۵، ۰/۸۸، ۰/۸۹ و ۰/۶۹ است. همچنین، میانگین RMSE برای چهار مدل در ۶ روز به ترتیب برابر با ۲/۱۷، ۱/۹۰، ۱/۷۷ و ۵/۴۵ میلی متر شده است. نتایج حاصل از این مقاله نشان می دهد که مدل SVR از قابلیت بسیار بالایی در برآورد مقدار بخار آب قابل بارش برخوردار بوده و از نتایج آن می توان در مباحث مرتبط با هواشناسی و پیش بینی بارش استفاده نمود. 

کلیدواژه ها

بخار آب قابل بارش, GPS, رادیوسوند, ANN, ANFIS, SVR

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.