Neural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators

سال انتشار: 1373
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 144

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-7-1_002

تاریخ نمایه سازی: 19 اسفند 1400

چکیده مقاله:

Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and analyzed. A two degree-of-freedom manipulator is considered as a case study and the functional dynamics for computed torque are identified using the proposed models. The simulation results are studied and analyzed for different models.

نویسندگان

S. Khanmohammadi

Electerical Engineering, University of Tabriz