Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

Determination of the Distribution Pattern of Mortality Using Data Mining Technique in Golestan Province since ۲۰۰۷ to ۲۰۰۹

فصلنامه زیست پزشکی جرجانی، دوره: 3، شماره: 2
سال انتشار: 1394
کد COI مقاله: JR_JOBJ-3-2_006
زبان مقاله: انگلیسیمشاهده این مقاله: 24
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 15 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Determination of the Distribution Pattern of Mortality Using Data Mining Technique in Golestan Province since ۲۰۰۷ to ۲۰۰۹

فاطمه باقری - Computer Engineering Department, Golestan University, Gorgan, Iran.
فاطمه آهنگری - Computer Engineering Department, Golestan University, Gorgan, Iran.
ناصر بهنام پور - health department, Golestan medical University, Gorgan, Iran.

چکیده مقاله:

Background and objectives: Investigatingg the mortality in a population has been considered as one of the appropriate methods of health detection. Although, there are some problems such as lack of confidence in accuracy measurement and quality of data collection. Establishment of death registration systems and using international classification codes of diseases, and also mortality data integrating by responsible organizations have solved great parts of the previous problems. In this study, considering a set of parameters, the study population was divided into two groups: deceased under one year (infants) and over one year (adults).  Then both groups were clustered using the K-means method to identify different groups. Hidden models and useful patterns were also discovered using decision tree algorithms. Finally, a neural network algorithm was used to show the ranking of attributes in order of their importance. Methods: In this research, data of ۱۲,۸۶۵ deceased individuals in Golestan province since ۲۰۰۷ to ۲۰۰۹ is studied. The data has been obtained from the Health Center of Golestan province. The main characteristics used in this study are: deceased age, gender, cause of death, place of residence and place of death. K-means algorithm is used to cluster data. The decision tree algorithms and neural networks algorithm were also used for classification. Finally, results and rules were extracted. Due to different natures of causes of death in infants and adults, studying on these different groups is performed separately. Results: In clustering phase, the optimal number of clusters is obtained by Dunn index; eight clusters for infants and seven clusters for adults were obtained. Among four decision-tree algorithms (C۵.۰, QUEST, CHAID and CART), C۵.۰ algorithm with high correction rate, ۷۷.۳۷% in infants data and ۹۶.۸۶% in adults data was the best classifier algorithm. Age, gender and place of death were the most important variables that were detected by neural network algorithm. Conclusion: In the present study, the collected mortality data was clustered by considering the effective factors and the standard of International Classification of Diseases. The hidden patterns of mortality for infants and adults were extracted. Due to the explicit nature and the intelligibility of the decision tree algorithms, the results and extracted rules are very useful for specialists in this field.

کلیدواژه ها:

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا JR_JOBJ-3-2_006 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1412820/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
باقری, فاطمه and آهنگری, فاطمه and بهنام پور, ناصر,1394,Determination of the Distribution Pattern of Mortality Using Data Mining Technique in Golestan Province since ۲۰۰۷ to ۲۰۰۹,https://civilica.com/doc/1412820

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1394, باقری, فاطمه؛ فاطمه آهنگری and ناصر بهنام پور)
برای بار دوم به بعد: (1394, باقری؛ آهنگری and بهنام پور)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • ...

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 2,847
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی