استخراج ویژگی به کمک یادگیری عمیق برای تشخیص و دسته بندی خطاهای مکانیکی یاتاقان در ماشین های القایی قفس سنجابی
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 204
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSFM-11-5_003
تاریخ نمایه سازی: 28 دی 1400
چکیده مقاله:
یاتاقان ها یکی از مهمترین اجزای است که در پیشرانه های ماشین های الکتریکی مورد استفاده قرار می گیرد. تشخیص و دسته بندی موثر و زودهنگام خطای یاتاقان برای نگهداری پیشرانه یک سیستم الکترومکانیکی بسیار حائز اهمیت خواهد بود. با پیشرفت در سیستم های اندازه گیری و دیجیتال، داده های گسترده و حجیم به صورت زمان-حقیقی در ماشین های الکتریکی در دسترس خواهد بود. با توجه به اینکه تشخیص خطا به کمک روش های مرسوم پردازش سیگنال از سیگنال استخراج شده ممکن است به دلایل مختلفی همچون سطح اغتشاش، فرکانس های طبیعی سیستم، اشباع هسته، شدت خطا و میزان گشتاور مقاوم امکان پذیر نباشد، روش های یادگیری عمیق در این راستا مورد توجه قرار گرفته اند. در این مقاله شبکه عمیق یادگیری سری زمانی برای پایش وضعیت یاتاقان در ماشین های الکتریکی به منظور دسته بندی و شناسایی نوع خطا استفاده شده است. نتایج به دست آمده با روش های موجود و مرسوم بر روی داده های عملی مورد مقایسه قرار گرفته است. نتایج بدست آمده از داده های عملی نشان می دهد که روش یادگیری عمیق ارائه شده با دقت بالای ۹۰ درصد امکان شناسایی و دسته بندی خطای یاتاقان را داراست.
کلیدواژه ها:
نویسندگان
محمد حسین تبار مرزبالی
استادیار، دانشکده مهندسی برق، دانشگاه صنعتی شاهرود، شاهرود، سمنان
سعید حسنی
کارشناسی ارشد، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شاهرود، شاهرود، سمنان
هدی مشایخی
استادیار، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شاهرود، شاهرود، سمنان
ولی الله مشایخی
استادیار، دانشکده مهندسی برق، دانشگاه صنعتی شاهرود، شاهرود، سمنان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :