A Comparison between MLP and SVR Models in Prediction of Thermal Properties of Nano Fluids
- سال انتشار: 1397
- محل انتشار: دوماهنامه مکانیک سیالات کاربردی، دوره: 11، شماره: 0
- کد COI اختصاصی: JR_JAFM-11-0_002
- زبان مقاله: انگلیسی
- تعداد مشاهده: 223
نویسندگان
Parisutham Institute of Technology and Science, Thanjavur-۶۱۳ ۰۰۵, Tamil Nadu, India
University College of Engineering Dindigul-۶۲۴ ۶۲۲, Tamil Nadu, India
چکیده
Desirable thermal properties of nanofluid is the vital reason for using nanofluid. There is an exemplary development in various applications using nanofluid. Mathematical and experimental models were developed to predict the thermal properties of nanofluids, the models are tiresome and expensive and have discrepancies between them. Soft computing tools are most useful in prediction, classification and clustering the data with good accuracy and with less expensive. In this paper, comparative analysis of Multi Layer Perceptron (MLP) model and Support Vector Regression (SVR) model were done by using various evaluation criterions. The two models developed to predict the thermal conductivity ratio of CNT/H۲O and the results were compared. The present modeling has been carried out using MATLAB ۲۰۱۷ b. In both the models, the experimental values and predicted values possess good accordance. Regression coefficient value (R۲) for overall data is ۰.۹۹ and ۰.۹۸ for MLP and SVR models respectively. The Root Mean Square Error (RMSE) value is less in MLP model when compared with SVR model, RMSE values are ۰.۰۱۵۷۸ and ۰.۰۱۸۱۲ respectively. The prediction is best in MLP model but with limited experimental data set, it fails to address over fitting problem, whereas SVR model is ideal with limited data set, it overcomes over fitting problem and possess better generalization than MLP model.کلیدواژه ها
Nano fluids, Thermal conductivity, Artificial neural network, Multilayer Perceptron, Support Vector Regressionاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.