Semantic Segmentation of Aerial Images Using Fusion of Color and Texture Features

  • سال انتشار: 1393
  • محل انتشار: مجله محاسبات و امنیت، دوره: 1، شماره: 3
  • کد COI اختصاصی: JR_JCSE-1-3_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 267
دانلود فایل این مقاله

نویسندگان

Mahdie Rezaeian

Isfahan University of Technology

Rasoul Amirfattahi

Isfahan University of Technology

Saeid Sadri

Isfahan University of Technology

چکیده

This paper presents a semantic method for aerial image segmentation. Multi-class aerial images are often featured with large intra-class variations and inter-class similarities. Furthermore, shadows, reflections and changes in viewpoint, high and varying altitude and variability of natural scene pose serious problems for simultaneous segmentation. The main purpose of segmentation of aerial images is to make subsequent recognition phase straightforward. Present algorithm combines two challenging tasks of segmentation and classification in a manner that no extra recognition phase is needed. This algorithm is supposed to be part of a system which will be developed to automatically locate the appropriate site for Unmanned Aerial Vehicle (UAV) landing. With this perspective, we focused on segregating natural and man-made areas in aerial images. We compared different classifiers and explored the best set of features for this task in an experimental manner. In addition, a certainty based method has been used for integrating color and texture descriptors in a more efficient way. The experimental results over a dataset comprised of ۲۵ high-resolution images show the overall binary segmentation accuracy rate of ۹۱.۳۴%.

کلیدواژه ها

Aerial Images, Semantic Segmentation, Classification, Local Binary Patterns, Feature Fusion, artificial neural network, Support Vector Machine, Random Forest

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.