Quantitative investi gation of structural paramete rs contri butions on anthraquinones sol ubility in SC-CO۲ by QSAR coupled to ANFIS
- سال انتشار: 1391
- محل انتشار: پانزدهمین سمینار شیمی فیزیک ایران
- کد COI اختصاصی: ISPTC15_0964
- زبان مقاله: انگلیسی
- تعداد مشاهده: 144
نویسندگان
Biophysical Chemi stry Laboratory, Department of Chemistry, Faculty of Science Ferdowsi Univers ity of Mashhad, Mashhad, Iran
Soil m echanics and foundation, Fa culty of Engin eering University of Gilan, Rasht, Iran
چکیده
In ۲۱s t century, si gnificant research is bei ng done on finding new methods of particle synthesis or the ir application at nano scale. Ma ny methods have been employed for synthe sis of nanom aterials. In recent years supercritica l fluids (SCFs) are findi ng wide ap plication in nano materials systemization. Thus, many theoretical dev elopment, experimental and appli cation studies have been done[۱&۲].Quantitative structure–activit y/property r elationship (QSAR/QSPR) methods are common and rather successful techniques in chemistry. However, in cases of complex relationships, conventional QS AR/QSPR methods often lead to insufficient or misleading inform ation because of nonlin ear relationships within the data set [۳].We h ave applied structural p arameters in uniquene ss and binary combinat ions to cal culate anthraquinones s olubility in supercritica l carbon dioxide. These structural parameters are comp uted by density functio nal theory: B۳LYP / ۶- ۳۱G. The se lected calc ulation meth od is available, fast an d reliable, so one can c alculate afo rementioned compoun ds solubility with high accuracy [۴]. Applying improvements in SC-CO ۲-based sy nthesis of na nomaterials, best results are achieved. This pa per propos es a new method, Ada ptive Neuro-Fuzzy Inference Syste m (ANFIS) to evaluate structural parameters of certain organic com pounds for their appro priate solubility in term s of QSA R models w ith the aid of artificial neural network (ANN) approach combined w ith the principle of fuzzy logic [۵]. The ANFIS was utiliz ed to predict solubility which accounts for non-linearities. A data set of ۲۱ compou nds was use d [۶]. The re sulted ۲ equ ations estim ate solubility with acceptable error.کلیدواژه ها
QSA R, ANFIS, Fuzzy logic, Structural p arameters, N anomateria ls synthesis.مقالات مرتبط جدید
- بررسی اثر مرز جمجمه و بافت مغز در تولید مولد های پوزیترونی در پروتون تراپی تومورهای مغزی
- تشخیص پارامترهای بافت بدن با استفاده از شبکه های عصبی بهینه شده
- تشخیص پارامترهای بافت بدن انسان از روی تصاویر سی تی با استفاده از شبکه عصبی کانولوشن بهینه شده
- بررسی مدل های پیش بینی حادثه احتمالی برای پخش و پراکندگی مواد رادیواکتیو از نیروگاه هسته ای در حال ساخت دارخوین
- مطالعه ی تولید تابش تراهرتز در برهمکنش پالس های پرتوان لیزر فوق کوتاه با پلاسمای گازهای چنداتمی بر پایه ی نظریه ی جنبشی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.