رویکرد مدیریتی در تحلیل درماندگی مالی بخش صنعت و معدن بازار سرمایه ایران با بکار گیری روش های یادگیری ماشین(NSGA-II,ABC)
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 117
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_BARBAZ-17-96_003
تاریخ نمایه سازی: 11 دی 1400
چکیده مقاله:
تحلیل درماندگی مالی یک پدیده بااهمیت برای سرمایه گذاران، اعتباردهندگان و سایر استفاده کنندگان از اطلاعات مالی محسوب می شود. تعیین احتمال درمانده شدن یک شرکت قبل از بروز درماندگی یک موضوع بسیار جالب و جذاب محسوب می شود و می تواند هم برای مدیران و هم برای سرمایه گذاران و اعتباردهندگان مفید واقع شود. در این پژوهش، با استفاده از اطلاعات ۱۳۵۰ شرکت سال طی دوره ۱۳۸۷ الی ۱۳۹۵ در بخش صنعت و معدن بازار سرمایه ایران، به بررسی عوامل موثر بر درماندگی مالی و پیش بینی آن به وسیله روش های یادگیری ماشین (الگوریتم ژنتیک مرتب سازی نامغلوب چندهدفه و کلونی زنبور عسل) با استفاده از نرم افزار متلب ۲۰۱۷ پرداخته است. نتایج تحقیق حاکی از تاثیر غیرمستقیم نسبت مدیران غیرموظف و نسبت مالکان نهادی و تاثیر مستقیم مدیریت سود و اعتمادبه نفس کاذب مدیریت بر درماندگی مالی از بین سایر متغیر های مدیریتی میباشد. همچنین نتایج نشان می دهد که الگوریتم هوش مصنوعی توانایی پیش بینی درماندگی مالی را بااستفاده از شاخص های مدیریتی دارد و توانایی الگوریتم کلونی زنبور عسل از الگوریتم ژنتیک مرتب سازی نامغلوب چندهدفه جهت پیش بینی درماندگی مالی بیشتر می باشد.
کلیدواژه ها:
نویسندگان
سید حسام وقفی
دکتری حسابداری و عضو هیات علمی دانشگاه پیام نور
پرویز مام صالحی
دانشجوی دکتری و عضو هیات علمی دانشگاه پیام نور
علی فیاض
کارشناس ارشد حسابداری دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران
سامیران خواجه زاده
دکتری مهندسی مالی دانشگاه آزاد اسلامی واحد شهر قدس
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :