Introducing a new algorithm based on a convolutional -neural network and its application in various fields

  • سال انتشار: 1400
  • محل انتشار: سیزدهمین کنفرانس بین المللی فناوری اطلاعات،کامپیوتر و مخابرات
  • کد COI اختصاصی: ITCT13_048
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 415
دانلود فایل این مقاله

نویسندگان

Fereshte Fazli

MSc in MBA Executive, University of Science and Culture, Tehran, Iran

Mahdi Mahmoodi

MSc student in Biomedical Engineering, Islamic Azad university-South tehran Branch, Tehran, Iran

Shiva Sanati

PhD Student in Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده

Convolution neural network is a multi-layered network that is very popular today. This network is very popular due to feature extraction from images, videos, etc. In this paper, we first apply three fundamental changes to the convolution neural network architecture and thus introduce a new convolution neural network that is very resistant to noise. Then we compare the newly introduced algorithm. We do this for the MNIST dataset in noisy and non-noisy mode. The results show that even if we add ۴۰% noise to the original data, the output of the proposed method is the same as the none-noise mode.We then suggest using the IMCNN + KNN hybrid algorithm to increase the classification accuracy. For this purpose, we use the ABIDE۱ database related to Magnetic Resonance Imaging of Autism Spectrum Disorder (ASD).The accuracy of classifying Normal Control with autism in the proposed method, even in the presence of noise, is ۹۸.۹%, which is a significant improvement over the CNN algorithm.

کلیدواژه ها

Autism Spectrum Disorder (ASD), improved convolutional neural network (IMCNN), k-nearest neighbors algorithm (KNN), Noise reduction

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.