A Study of Data Mining Techniques for Diagnosis Diabetes

  • سال انتشار: 1400
  • محل انتشار: سیزدهمین کنفرانس بین المللی فناوری اطلاعات،کامپیوتر و مخابرات
  • کد COI اختصاصی: ITCT13_010
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 349
دانلود فایل این مقاله

نویسندگان

Fahimeh Sanjarani

Department of Computer Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran

Parisa Daneshjoo

Department of Computer Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran

چکیده

Diabetes Mellitus is a disease caused by metabolic disorders that is characterized by high blood sugar levels in the long term. Symptoms often include frequent urination, increased thirst and appetite. If left untreated, DM can cause many health problems. Data mining techniques can help diagnose DM early and prevent the progression of the disease as well as its complications such as cardiovascular disease, vision problems, leg ulcers, nerve damage and kidney disease. On the other hand, reviewing a large amount of this data requires the use of effective and efficient methods to find appropriate patterns of this data that the use of various techniques of machine learning and data mining, especially classification algorithms can be a significant help in this regard. In this review study, Google Scholar, Science Direct, and Scopus databases were reviewed with the aim of finding English articles published between ۲۰۰۵ and ۲۰۲۰. The search was based on relevant keywords and the obtained articles were evaluated based on the purpose of the study. The results of this study show that classification algorithms such as SVM, ANN, RF, DT, K-NN and NB are the most widely used machine learning and data mining techniques which they have been used to diagnose and predict the likelihood of developing DM. In fact, implementing a method that can correctly diagnose whether or not people have DM will be an important issue in controlling DM.

کلیدواژه ها

Data Mining, Diabetes Data Mining, Diabetes Mellitus, Machine Learning

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.