Multi-Task Feature Selection for Speech Emotion Recognition: Common Speaker-Independent Features Among Emotions
- سال انتشار: 1400
- محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 9، شماره: 3
- کد COI اختصاصی: JR_JADM-9-3_001
- زبان مقاله: انگلیسی
- تعداد مشاهده: 278
نویسندگان
Faculty of Computer Engineering and IT, Sadjad University of Technology, Mashhad, Iran.
Faculty of Computer Engineering and IT, Sadjad University of Technology, Mashhad, Iran.
چکیده
Feature selection is the one of the most important steps in designing speech emotion recognition systems. Because there is uncertainty as to which speech feature is related to which emotion, many features must be taken into account and, for this purpose, identifying the most discriminative features is necessary. In the interest of selecting appropriate emotion-related speech features, the current paper focuses on a multi-task approach. For this reason, the study considers each speaker as a task and proposes a multi-task objective function to select features. As a result, the proposed method chooses one set of speaker-independent features of which the selected features are discriminative in all emotion classes. Correspondingly, multi-class classifiers are utilized directly or binary classifications simply perform multi-class classifications. In addition, the present work employs two well-known datasets, the Berlin and Enterface. The experiments also applied the openSmile toolkit to extract more than ۶۵۰۰ features. After feature selection phase, the results illustrated that the proposed method selects the features which is common in the different runs. Also, the runtime of proposed method is the lowest in comparison to other methods. Finally, ۷ classifiers are employed and the best achieved performance is ۷۳.۷۶% for the Berlin dataset and ۷۲.۱۷% for the Enterface dataset, in the faced of a new speaker .These experimental results then show that the proposed method is superior to existing state-of-the-art methods.کلیدواژه ها
Speech emotion recognition, Multi-Task Feature Selection, Speaker Independent Features, Cross-Corpus Feature Selection, Affective Processingاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.