Applying Genetic Algorithm and Artificial Neural network for Crack Identification in Blades

  • سال انتشار: 1389
  • محل انتشار: پنجمین کنفرانس پایش وضعیت و عیب یابی
  • کد COI اختصاصی: CMFD05_033
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 2635
دانلود فایل این مقاله

نویسندگان

Foad Nazari

۱Msc Student, Mechanical engineering department, Bu-Ali Sina University, Hamedan, Iran.

Hossein Goudarzvand Chegini

Msc Student, Mechanical engineering department, Islamic Azad University of Takestan, Takestan, Iran

Mohsen Behzadi۳

۳Msc Student, Mechanical engineering department, Bu-Ali Sina University, Hamedan, Iran.

Mahdi Karimi

Assistance Professor, Mechanical engineering department, Bu-Ali Sina University, Hamedan, Iran.

چکیده

In this paper a method for crack detection in blades is presented. In the suggested method, the process of crack identification is consists of four stages. In first stage, three natural frequencies of a blade for different locations and depths of cracks were calculated using Finite Element Method (FEM). The obtained results were verified with the results of experimental modal analysis. In second stage, two Multi Layer Feed Forward (MLFF) neural networks were created. In third stage, Genetic Algorithm (GA) was used to training the neural network. The inputs of neural networks were the first three natural frequencies and the outputs of first and second neural networks were corresponding locations and depths of cracks, respectively. In forth stage, some of natural frequencies of blade with different crack situations as inputs applied to trained neural networks. Finally obtained results showed that predicted cracks characteristics were in good agreements with actual data

کلیدواژه ها

crack detection, genetic algorithm, finite element method, experimental modal analysis, blade

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.