آنالیز مقایسهای بازیابی شاخص سطح برگ با استفاده از روشهای یادگیری ماشین مبتنی بر داده های ابرطیفی
- سال انتشار: 1399
- محل انتشار: نشریه سنجش از دور و GIS ایران، دوره: 12، شماره: 3
- کد COI اختصاصی: JR_GIS-12-3_004
- زبان مقاله: فارسی
- تعداد مشاهده: 356
نویسندگان
کارشناسی ارشد سنجش از دور و GIS، دانشگاه تربیت مدرس
کارشناسی ارشد سنجش از دور و GIS، دانشگاه تربیت مدرس
استادیار گروه سنجش از دور و GIS، دانشگاه تربیت مدرس
استادیار گروه سنجش از دور و GIS، دانشگاه تربیت مدرس
چکیده
متغیرهای بیوفیزیکی و بیوشیمیایی پوشش گیاهی، به منزله متغیرهای ورودی، برای مدل های متفاوت چرخه کربن، آب، انرژی و مدل های اقلیمی و کشاورزی دقیق نقش مهمی ایفا می کنند. یکی از مهم ترین متغیرهای مربوط به تاج پوشش گیاه، که کاربردهای فراوانی در مدل سازیهای گوناگون خاک و گیاه و اتمسفر دارد، شاخص سطح برگ (LAI) است. روشهای گوناگونی برای بازیابی LAI از تصاویر ابرطیفی به کار رفته اند که، از میان آنها، روشهای ناپارامتریک غیرخطی یادگیری ماشین بسیار مورد توجه قرار گرفته اند زیرا، در مواجهه با داده های دارای ابعاد زیاد، انعطاف پذیرند. بااین حال، در مطالعات پیشین، به بررسی عملکرد روشهای یادگیری ماشین در بازیابی مقادیر LAI در مقادیر حاشیهای (مقادیر خارج از دامنه نمونهگیری زمینی) و قابلیت این روش ها در تهیه نقشه متغیر توجه چندانی نشده است. در این تحقیق، عملکرد چهار روش پرکاربرد یادگیری ماشین شامل رگرسیون بردار پشتیبان، فرایند گاوسی، شبکه عصبی مصنوعی و جنگل تصادفی در بازیابی LAI از تصویر ابرطیفی ماهواره کریس پروبا بررسی شده است. نتایج نشان داد که، به رغم کارآیی هر چهار روش در بازیابی مقادیر LAI برای دامنه مقادیر اندازهگیری شده زمینی با RMSE بهتر از ۰.۵ و خطای نسبی کمتر از ۱۰%، روشهای فرایند گاوسی و رگرسیون بردار پشتیبان صحت بالاتری در مقایسه با سایر روشها دارند. باوجوداین، عملکرد روش شبکه عصبی مصنوعی، در تخمین LAIهای دارای مقادیر حاشیهای، بهتر از دیگر روشهاست و نقشه تهیه شده با این روش و تابع یادگیری GDA تطابق بیشتری با نقشه NDVI و تصویر ابرطیفی منطقه دارد.کلیدواژه ها
بازیابی پارامتر, شاخص سطح برگ, داده ابرطیفی, روشهای ناپارامتریک یادگیری ماشین, کریس پروبااطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.