Application of a new ANN For prediction of Thermodynamic Conditions of Natural Gas Hydrate Formation

  • سال انتشار: 1390
  • محل انتشار: اولین همایش ملی هیدرات گازی ایران
  • کد COI اختصاصی: NICGH01_060
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1827
دانلود فایل این مقاله

نویسندگان

Hossein Rezaei

Research & Technology Department, National Iranian Gas Company, Khorasan Razavi Province, Mashhad

S. Iman Pishbin۱

Research & Technology Department, National Iranian Gas Company, Khorasan Razavi Province, Mashhad

Fatemeh Hassani۲

Chemical Engineering Group, Engineering Department, Ferdowsi University, Mashhad

چکیده

Determination of hydrate formation conditions is of the utmost interest for the petroleum and process engineers. And petroleum industry spends millions dollars to combat the formation of hydrate. In this work four empirical correlations proposed by Berge, Motiee, Sloan and Hammerschmidt were evaluated with a new artificial neural network (ANN) method. These correlations are based on gas gravity method has served the gas processing industry well, as an initial estimate for a long period of time. ANN is applied for more than 400 rows of data in the range of 30-74 F, 50-4200 psia and 0.6-1 for temperature, pressure and specific gravity, respectively. In the ANN method, 70% of samples are used for network's training and 30% are chosen for data testing and validation. Also, 6 types of statistical error analyses is used to evaluate the performance and the accuracy of the correlations for estimating natural gas hydrate formation to guide designers and operators in selecting the best correlations for their particular applications. Approximately in all comparisons, the average error of ANN Method is less than the other correlations.

کلیدواژه ها

artificial neural network, ANN, natural gas hydrate, hydrate formation, Gas Gravity

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.