Land use change detection and prediction using Similarity Weighted Instance-based Learning, A Case Study: Tehran, Iran

  • سال انتشار: 1399
  • محل انتشار: اولین کنفرانس بین المللی و دومین کنفرانس ملی فناوری ها و کاربردهای نوین ژئوماتیک
  • کد COI اختصاصی: NGTU02_070
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 383
دانلود فایل این مقاله

نویسندگان

Ali Babaeian

GIS M.Sc. Student at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

Parham Pahlavani

Assistant Professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

Behnaz Bigdeli

Assistant Professor at School of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

چکیده

The development of cities cannot be considered useful or harmful itself, but it will have irreparable consequences if this development is unplanned and unbridled. Unplanned land use changes in cities not only disrupt urban management but also cause damage to the environment. Therefore, modelling and predicting these changes can play a significant role in urban management planning. In this study, a way to model and predict multiple land changes has been provided. In this regard, a similarity weighted instance-based learning method was used. In this study, Landsat satellite images were used in ۲۰۰۲, ۲۰۰۸ and ۲۰۱۴ to extract the land use map using the support vector machine (SVM) classification method. Modelling was performed to reach the probability of change map, where pixels with higher probability indicated that they belong to the intended land use class. The Multi Objective Land Allocation (MOLA) method then identified potential areas for land use change for each land use class for ۲۰۲۰, using maps of the probability of land use change from the changeable area between ۲۰۰۲ and ۲۰۰۸. Kappa coefficients are obtained for two algorithms. Results showed the high capability of the proposed method used.

کلیدواژه ها

Markov chain, Cellular automata, Land use change Prediction, Similarity Weighted Instance-based Learning

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.