A Machine Learning Approach to Predict Creatine Kinase Test Results

  • سال انتشار: 1399
  • محل انتشار: مجله ایتالیایی علوم و مهندسی، دوره: 4، شماره: 4
  • کد COI اختصاصی: JR_IJSE-4-4_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 374
دانلود فایل این مقاله

نویسندگان

Zehra Nur Canbolat

Management Information Systems, Istanbul Medipol University, Istanbul, Turkey

Gökhan Silahtaroğlu

Management Information Systems, Istanbul Medipol University, Istanbul, Turkey- Pusula Enterprise Business Solutions - Research and Development Centre, Istanbul, Turkey

Özge Doğuç

Management Information Systems, Istanbul Medipol University, Istanbul, Turkey

Nevin Yılmaztürk

Pusula Enterprise Business Solutions - Research and Development Centre, Istanbul, Turkey

چکیده

Most of the research done in the literature are based on statistical approaches and used for deriving reference limits based on lab results. As more data are available to the researchers, ML methods are more effectively used by the clinicians and practitioners to reduce cost and provide more accurate diagnoses. This study aims to contribute to the medical laboratory processes by providing an automated method in order to predict the lab results accurately by machine learning from the previous test results. All patient data obtained have been anonymized, and a total of ۴۴۹,۴۷۱ test results have been used to build an integrated dataset. A total of ۱۰۷,۶۴۶ unique patients’ data has been used. This study aims to predict the value range of the Creatine Kinase tests, which are taken in separate tubes and usually needs more processing time than the other tests do. Using the lab results and the Random Forest Algorithm, this study reports that the outcome of the Creatine Kinase test can be determined with ۹۷% accuracy by using the AST and ALT test values. This is an important achievement for the practitioners and the patients, as this study submits significant reduction in Creating Kinase test evaluation time.

کلیدواژه ها

Laboratory Tests; Creatine Kinase; Data Mining; Machine Learning; Decision Tree

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.