Generalizability in White Blood Cells’ Classification Problem
- سال انتشار: 1400
- محل انتشار: بیست و نهمین همایش سالانه بین المللی انجمن مهندسان مکانیک ایران و هشتمین همایش صنعت نیروگاه های حرارتی
- کد COI اختصاصی: ISME29_369
- زبان مقاله: انگلیسی
- تعداد مشاهده: 750
نویسندگان
Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran;
Seyedeh-Zahra Mousavi Kouzehkanan
School of ECE, College of Engineering, University of Tehran, Tehran, Iran
چکیده
Counting and classifying white blood cells (WBCs) in blood samples helps the early diagnosis of the disease. Many works have been done to develop machine learning-based methods to count WBCs. However, most of these works have low generalizability, and their accuracy decreases sharply as the dataset changes. In this paper, a new method is presented that helps to increase the generalization power. In this method, first, the WBC's nucleus is segmented, and then its convex hull is obtained. By subtracting the nucleus from the convex hull, a new image is created called the representative of the convex hull (ROC). Then, by Training a convolutional neural network (CNN) with the cells’ RGB image as well as the binary images of the nucleus and ROC, the generalization power is increased. The proposed method was first trained on the Raabin-WBC dataset, then its performance was evaluated on the LISC dataset without retraining. The proposed method's accuracy on the Raabin-WBC and LISC datasets is ۹۳.۹۷ % and ۵۱.۵۷ %, respectively. Besides, the generalization power of four well-known CNNs named VGG۱۶, ResNext۵۰, MobileNet-V۲, and MnasNet۱ was investigated. It was found that VGG۱۶ has more generalization power among these modelsکلیدواژه ها
white blood cells, deep convolutional networks, generalizability, classification, segmentationمقالات مرتبط جدید
- بهینه سازی مدیریت انرژی در ریزشبکه ها با استفاده از الگوریتم های هوش مصنوعی
- مبانی، کاربردها و چالشهای یادگیری مشارکتی و تحلیل تجربی و مقایسه ابزارهای یادگیری فدرالی در پیاده سازی مدلهای یادگیری ماشین
- راهکارهای مبتنی بر هوش مصنوعی برای بهره وری انرژی در تولید سیمان: یک بررسی جامع
- معماری اینترنت اشیا مبتنی بر هوش مصنوعی در مدیریت انرژی هوشمند
- سیستم های EMS/BMS در ساختمان های ZEB و نمونههای اجرا شده آن در سطح جهانی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.