کاربرد شبکه های عصبی مصنوعی در شناسایی عیوب قطعات صنعتی

  • سال انتشار: 1389
  • محل انتشار: فصلنامه صنایع الکترونیک، دوره: 1، شماره: 3
  • کد COI اختصاصی: JR_SAIRAN-1-3_004
  • زبان مقاله: فارسی
  • تعداد مشاهده: 334
دانلود فایل این مقاله

نویسندگان

عباس کریمی

کارشناسی ارشد برق، دانشگاه شاهد

سید سعید طبائی

دانشگاه شاهد

چکیده

در بسیاری از سامانه ها و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل و شناسایی آنها از طریق روش های کلاسیک و تحلیلی امری دشوار و زمان بر می باشد،می توان از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردار می باشند، استفاده نمود. شبکه های عصبی یکی از این روش های بدیع و در حال تحول است که در موضوعات متنوعی از قبیل الگوسازی، شناخت الگو، خوشه بندی (دسته بندی) و پیش بینی بکار رفته و نتایج مفیدی داشته است. در این مقاله، از شبکه های عصبی برای تشخیص الگوی سیگنال های فراصوتی که با استفاده ازروش Pulse-Echo در منطقه جوش خورده بدست آمده اند جهت ارزیابی استفاده شده است. شبکه مورد نظر از نوع سپترون چند لایه (MLP) با روش یادگیری پس از انتشار است که در محیط MATLAB اجرا می شود. در این تحقیق نقص های گوناگون مانند:(Non-defect(ND(Slag Inclusion (SL(Excessive Penetration (Exp(Lack of Fusion (LOF(Lack of Penetration (LOPمورد بررسی قرار گرفته اند. سیگنالهای فراصوتی بدست آمده از Pulse-Echo برای عیوب را بدون پیش پردازش و با پیش پردازش توسط (Wavelet) به شبکه عصبی مصنوعی اعمال شده اند. نتایج بدست آمده نشان دهنده کارآمدی روش های فوق با بیش از ۹۱ % موفقیت درحالت بدون پیش پردازش وبیش از ۹۸ % موفقیت درحالت باپیش پردازش برای شناسایی و دسته بندی عیوب درمواد جوشکاری شده می باشد.

کلیدواژه ها

شبکه های عصبی مصنوعی, نرم افزار Matlab, آزمایش ها غیرمخرب, تکنیک فراصوتی, تشخیص الگو

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.