Epileptic Electroencephalogram Classification using Relative Wavelet Sub-Band Energy and Wavelet Entropy

  • سال انتشار: 1400
  • محل انتشار: ماهنامه بین المللی مهندسی، دوره: 34، شماره: 1
  • کد COI اختصاصی: JR_IJE-34-1_009
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 378
دانلود فایل این مقاله

نویسندگان

S. Hadiyoso

School of Applied Science, Telkom University, Bandung, Indonesia

I. D. Irawati

School of Applied Science, Telkom University, Bandung, Indonesia

A. Rizal

School of Electrical Engineering, Telkom University, Bandung, Indonesia

چکیده

Epilepsy is one of the common neurological disorders which can cause unprovoked seizures. Currently, diagnosis and evaluation are carried out using electroencephalogram (EEG) signal analysis, which is performed visually by clinicians. Since EEG signals tend to be random and non-stationary, the visual inspection often provides misrepresentation of results. Numerous studies have been proposed computer-based analysis for epileptic EEG classification; however, there is still a gap to improve detection accuracy with a small number of features. Therefore, in this study, we proposed an automatic detection protocol for epileptic EEG classification. The proposed methods are relative wavelet energy and wavelet entropy for feature extraction and combined with the classifier method for automatic detection. In this study, three classes of EEG consisted of pre-ictal, ictal, and interictal were used as test data and also evaluate the proposed method. EEG signals were decomposed using wavelet transform into five conventional sub-bands, including gamma, beta, alpha, theta, and delta. The relative energy and entropy were then calculated in each of these bands as a feature set. These methods are chosen with consider of low-cost computing. We tested the performance of our feature extraction method using Support Vector Machine (SVM), both linear and non-linear kernels. From the simulation, the highest accuracy was ۸۰-۹۶.۷% for ictal vs. pre-ictal, ictal vs. inter-ictal, pre-ictal vs. inter-ictal, and ictal vs. non-ictal. Finally, this work was expected to help clinicians in the detection of epilepsy onset based on EEG signals.

کلیدواژه ها

Epilepsy, Electroencephalogram, Entropy, Wavelet Energy

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.