Plant Classification in Images of Natural Scenes Using Segmentations Fusion

  • سال انتشار: 1399
  • محل انتشار: ماهنامه بین المللی مهندسی، دوره: 33، شماره: 9
  • کد COI اختصاصی: JR_IJE-33-9_007
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 353
دانلود فایل این مقاله

نویسندگان

N. Nikbakhsh

Department of Electrical & Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

Y. Baleghi Damavandi

Department of Electrical & Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

H. Agahi

Department of Mathematics, Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, Iran

چکیده

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Where there are no presumptions about leaf and background, segmentation of leaves in images with complex background is very difficult. In addition, each image has special conditions, so parameters of the algorithm must be set for each image. In this paper, image segmentation fusion is used to overcome this problem. A fast method based on maximum mutual information is used to fuse the results of leaf segmentation algorithms with different parameters. Applying Tsallis entropy and g-calculus, generalized mutual information equations are derived and used to obtain the best consensus segmentation. To evaluate the proposed methods, a dataset with tree leaf images in natural scenes and complex backgrounds is used. These images were taken from Pl@ntLeaves dataset and modified so that they do not have a presumption. The experimental results show the use of Tsallis entropy and g-calculus in image segmentation fusion, improves plant species identification.

کلیدواژه ها

g-calculus, Image Segmentation Fusion, Mutual Information, Plant Classification, Tsallis Entropy

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.