Predictive modeling of the length of prepared CNT by CVD through ANN-MPSO and GEP

  • سال انتشار: 1398
  • محل انتشار: نشریه علوم و فناوری ذرات، دوره: 5، شماره: 4
  • کد COI اختصاصی: JR_JPST-5-4_003
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 330
دانلود فایل این مقاله

نویسندگان

Morteza Khosravi

Department of Materials Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Malihe Zeraati

Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

چکیده

Floating catalyst chemical vapor deposition (FC-CVD) is considered as one of the most appropriate techniques for the preparation of carbon nanotubes (CNTs) on the industrial scale. This paper tried to model the length of CNTs prepared by FC-CVD using two approaches, i.e. gene expression programs and hybrid artificial neural networks. In this regard, the effect of various FC-CVD parameters, viz. temperature, time, preheat temperature, Ar gas flow, methane gas flow, ethylene gas flow, Al۲O۳ catalyst, and Fe catalyst, on the length of CNTs, were investigated. At first, a hybrid artificial neural network-modified particle swarm optimization strategy (ANN-MPSO) has been used to model the CNTs length as a function of practical variables. In the next step, the same modeling of the problem was done using gene expression programming (GEP) instead of ANN-MPSO. The accuracy of the developed hybrid ANN-MPSO and GEP models was compared with regard to the linear combination of mean absolute percentage error and correlation coefficient as criteria. The results confirmed that the ANN model upgraded by the meta-heuristics strategy could be effectively applied for an accurate predictive model in the estimation of the length of CNTs as a function of the most important practical FC-CVD parameters. Also, the sensitivity analysis confirmed that the precursor type of carbon (including CH۴ and C۲H۴) and the preheat temperature have the highest and the least effect on the length of CNTs, respectively.

کلیدواژه ها

Gene expression programming, Hybrid artificial neural network, Floating catalyst, carbon nanotubes

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.