Weighted SVM-ARIMA hybrid model for financial time series forecasting
- سال انتشار: 1399
- محل انتشار: هفدهمین کنفرانس بین المللی مهندسی صنایع
- کد COI اختصاصی: IIEC17_023
- زبان مقاله: انگلیسی
- تعداد مشاهده: 366
نویسندگان
Isfahan University of Technology, Department of Industrial and ۱ Systems Engineering
چکیده
With the increasing importance of forecasting with the high degree of accuracy, many forecasting approaches have been broadly developed to forecast in an ccurate way. Series hybrid methodology is one of the most commonly-used hybrid approaches that has encountered a great amount of attractiveness in the literature of time series forecasting and has been applied successfully in a wide variety of domains. However, conventional series hybrid models proposed in the literature are established based on the decomposing time series into linear and nonlinear parts and generating linearnonlinear modeling order for modeling decomposed components. Another assumption considered in the traditional series model is assigned equal weights to each model used for modeling linear and nonlinear components. Thus, in this paper in contrary to traditional series hybrid models, in order to improve the performance of series hybrid models, these two basic assumptions have been violated. The main aim of this study is to propose a novel weighted SVM-ARIMA model filling the gap of series hybrid models by changing the order of sequence modelling and assigning appropriate weights for SVM and ARIMA employing Ordinary Least Square (OLS) weighting algorithm. The effectiveness of the proposed hybrid model is proved through the benchmark data sets e.g. Dow Jones Industrial Average Index (DJIAI) and Nikkei 225 (N225) stock price. The experimental results verified that the proposed model outperforms the ARIMA-SVM, ARIMA, and SVM models in stock price forecasting.کلیدواژه ها
Series Hybrid Model, Weighted SVM-ARIMA model, Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Machine (SVM), Financial Time Series Forecastingمقالات مرتبط جدید
- نهان کاوی صوتی براساس مدل psychoacoustic معکوس شنیداری انسان
- اهمیت و جایگاه هوش مصنوعی و لجستیک بحران در حملات بیوتروریستی
- بهینه سازی سبد سهام بورس اوراق بهادار تهران با استفاده از الگوریتم ژنتیک
- بررسی چالش های امنیتی و راهکارهای آن در پایگاه داده های NoSQL و کلان داده ها
- طراحی مدل تخصیص هواپیماها به مسیر جهت حداکثر کردن سود مورد انتظار با در نظر گیری عدم قطعیت در تقاضا
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.