پیش بینی بیماری قلبی با استفاده از شبکه عصبی مصنوعی بهبود یافته

  • سال انتشار: 1398
  • محل انتشار: مجله علمی پژوهشی دانشگاه علوم پزشکی ایلام، دوره: 27، شماره: 5
  • کد COI اختصاصی: JR_SHIMU-27-5_002
  • زبان مقاله: فارسی
  • تعداد مشاهده: 642
دانلود فایل این مقاله

نویسندگان

جلال رضایی نور

گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران

غفران سعدی

گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران

میثم جهانی

گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران

چکیده

مقدمه: پیش بینی صحیح بیماری قلبی افراد از اهمیت زیادی برخوردار است، لذا برای این پیش بینی بایستی از آن دسته مدل هایی استفاده کرد که دارای حداقل خطا و حداکثر اطمینان باشد .از این رو در این مطالعه از ترکیب شبکه عصبی مصنوعی با الگوریتم ژنتیک جهت ارزیابی مبتلا بودن افراد به سکته قلبی و نارسایی احتقانی استفاده شد. مواد و روش ها: در این تحقیق از شبکه عصبی مصنوعی پرسپترون چندلایه با الگوریتم پس انتشار خطا که با الگوریتم ژنتیک ترکیب شده جهت ارزیابی وضعیت دو بیماری قلبی استفاده شد. در این مقاله با استفاده از روش نمونه گیری خوشه ای اطلاعات بیمارستان آیت الله گلپایگانی قم که شامل 497 بیمار قلبی بود جمع آوری شد و نتایج با استفاده از نمودار راک مورد ارزیابی قرار گرفت. در نهایت داده ها که مشتمل بر متغیرهای فردی و بالینی مانند سن، جنسیت، تنگی نفس، تغییرات فشارخون و تعدادی آزمایش خون بود توسط تابع انتقال سیگموئید و تانژانت سیگموئید انتخاب و با تعداد 19 نرون ورودی و پنج نرون لایه میانی شبکه عصبی آموزش داده شد. یافته‌ های پژوهش: بررســــی ‌ها نشان داد که شبکه عصبی با پنج نرون لایه میانی دارای دقت بالاتری نسبت به سایر حالت ‌ها می‌ باشد و می ‌توان با ارائه این شبکه عصبی با دقت 7/97 درصد بیماران سکته قلبی را پیش بینی کرد. بحث و نتیجه گیری: در این مطالعه با ترکیب شبکه عصبی و الگوریتم ژنتیک مدلی جهت پیش بینی بیماری قلبی ارائه شد. در این پژوهش سعی شد که از  فاکتورهای مهم و کم هزینه جهت پیش بینی بیماری قلبی استفاده شود به‌ طوری که با کمترین هزینه شخص از بیماری خود آگاهی پیدا کند.

کلیدواژه ها

Artificial neural network, cardiovascular disease, Data mining, Genetic algorithm, Prediction, پیش بینی, بیماری قلبی, داده کاوی, شبکه عصبی مصنوعی, الگوریتم ژنتیک

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.