Optimization of ANFIS model using wavelet transform for simulating groundwater level variations

  • سال انتشار: 1399
  • محل انتشار: دوفصلنامه تحقیقات کاربردی در آب و فاضلاب، دوره: 7، شماره: 1
  • کد COI اختصاصی: JR_ARWW-7-1_003
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 332
دانلود فایل این مقاله

نویسندگان

Fariborz Yosefvand

Department of Water Engineering, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

Saeid Shabanlou

Department of Water Engineering, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

چکیده

In this study, for the first time, groundwater level (GWL) variations of the Sarab-e Qanbar well located in the city of Kermanshah, are simulated over a 13-year period by a hybrid model named WANFIS (wavelet-adaptive neuro fuzzy inference system). In order to develop the hybrid model, the wavelet transform and the adaptive neuro fuzzy inference system (ANFIS) model are utilized. Furthermore, the 9 and 4 year data are used for training and testing the artificial intelligence models, respectively. Moreover, the effective lags are detected by the autocorrelation function (ACF) and then eight different models are developed for each of the ANFIS and WANFIS models using them. After that, all mother wavelets are evaluated and Dmey mother wavelet is chosen as the most optimal. For this mother wavelet, the values of scatter index (SI), variance account for (VAF) and Root mean square error (RMSE) are obtained 0.192, 94.951 and 3.117, respectively. Next, the superior model is detected through the analysis of the results obtained by all ANFIS and WANFIS models. The superior model estimates the objective function values with reasonable accuracy. For example, the correlation coefficient (R), Scatter Index (SI) and variance account for (VAF) for this model are obtained 0.974, 0.192 and 94.951, respectively. The modeling results indicate that the wavelet transform noticeably enhances the ANFIS model accuracy. Finally, the lags of the time series data for the Sarab-e Qanbar well including (t-1), (t-2), (t-3) and (t-4) are introduced as the most effective lags.

کلیدواژه ها

Groundwater level variations, Hybrid artificial intelligence technique, Wavelet transform, ANFIS, Optimization, Simulation

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.