Predict harvesting of Trichiurus lepturus (Largehead Hairtail) stocks in Perian Gulf and Sea of Oman (Iran)
- سال انتشار: 1399
- محل انتشار: چهارمین کنگره بین المللی تحقیقات شیلات و آبزیان
- کد COI اختصاصی: ICFAR04_103
- زبان مقاله: انگلیسی
- تعداد مشاهده: 270
نویسندگان
Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Chabahar, Iran.
Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran.
Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran.
چکیده
The purpose of this study is to develop a framework that uses of different forecasting methods and selects the best one with the least possible forecasting errors to predict harvesting of Trichiurus lepturus (Largehead Hairtail) stocks in Perian Gulf and Sea of Oman. In this study, the eleven different forecasting techniques including decomposition method (Multiplicative and Additive), moving average, exponential smoothing (Single, Double), trend an analysis (Linear, Exponential, Quadratic, S-Curve), Winters method (Multiplicative and Additive) were performed by statistical technique to predict harvesting of T. lepturus (Largehead Hairtail) stocks in Persian Gulf and Sea of Oman. Then, it was observed the results of model Trend Analysis of Quadratic (MAPE=2.77, MAD=0.10, MSD=0.01) are better than other models according to these tests and coefficients and finally, a prediction was accomplished for a period of five years by using the same model. Various models use to identifies orders of autoregressive integrated moving average, ARIMA, (p, d, q) based on the AIC and BIC, and then ARIMA (0, 1, 1) with drift was suitable for modeling annual T. lepturus landings based on the selection criteria (AIC=1.75, BIC=3.79).کلیدواژه ها
forecasting techniques, trend analysis, autoregressive integrated moving average (ARIMA), Trichiurus lepturus (Largehead Hairtail)مقالات مرتبط جدید
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.