A New Retinal Vessel Segmentation Method Using Preprocessed Gabor and Local Binary Patterns

  • سال انتشار: 1389
  • محل انتشار: ششمین کنفرانس ماشین بینایی و پردازش تصویر ایران
  • کد COI اختصاصی: ICMVIP06_053
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 2337
دانلود فایل این مقاله

نویسندگان

M. Shahram Moin

IEEE Senior Member, Islamic Azad University, Qazvin Branch

Hamed Rezazadegan Tavakoli

IEEE Student Member, Islamic Azad University, Science and Research Branch

Ali Broumandnia

Islamic Azad University, South Tehran Branch

چکیده

A new retinal vascular tissue segmentation algorithm, which utilizes Gabor wavelet and local binary patterns, is introduced. It would be shown that how a simple preprocessing step would increase the accuracy of algorithm. Different features have been proposed for retinal vessel detection. One of the most famous features adapted is Gabor wavelet. Thanks to multi-resolution property of Gabor, combination of scales can be used to extract features. However, similar features in feature vector would increase the intercorrelation and may lead to poor result. Also, Local Binary Pattern (LBP) is applied. LBP is a powerful feature for texture analysis. A wise pre-processing strategy is applied to image with regard to feature extraction technique. Contrary to previous methods where a simple pre-processing scheme applied for all feature extraction methods, here each feature extraction will utilize its own suitable pre- processing. It is showed that this enhances the result of segmentation. The proposed method has a low dimension feature vector having only four features. The pre-processing step enhances the results in comparison to a previous method in term of area under the ROC curve The computational results of simulations show the high performance of the proposed method in term of accuracy and speed.

کلیدواژه ها

Vessel segmentation, Retina, Gabor filter,Local Binary Pattern

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.