Traffic management via traffic parameters prediction by using machine learning algorithms

  • سال انتشار: 1400
  • محل انتشار: فصلنامه بین المللی سرمایه انسانی در مدیریت شهری، دوره: 6، شماره: 1
  • کد COI اختصاصی: JR_IJHCUM-6-1_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 460
دانلود فایل این مقاله

نویسندگان

A. Rasaizadi

Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

A. Ardestani

Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

S.E. Seyedabrishami

Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

چکیده

BACKGROUND AND OBJECTIVES: One of the short-term strategies to manage the traffic and make a balance between travel supply and demand for the near future is the short-term prediction of traffic parameters and informing the passengers. Therefore passengers are more likely to avoid traveling during traffic peak hours. In this study, hourly average traffic speed and hourly traffic volume as two traffic parameters that indicate traffic state are predicted for Karaj-Chaloos road in Iran. METHODS: Since traffic data have large volume, machine learning-based models have more suitable performance than traditional models. However, it is not merely possible to discover the cause and effect relationships and the importance of features. In this study, after using the artificial neural network and K-nearest neighbor models to predict traffic parameters, to analyze the sensitivity of the results, the importance of used features is investigated. Also, the effect of passing the time over the accuracy of predictions has been examined. FINDINGS: According to the results, the highest accuracy of predicting hourly traffic volume and hourly average traffic speed is achieved by the K-nearest neighbor that is equal to 61% and 91%, respectively. CONCLUSION: Compared to the historical average as a benchmark model, a significant improvement in the accuracy of predictions has been obtained by the artificial neural network and K-nearest neighbor models.

کلیدواژه ها

K-Nearest Neighbor, Machine Learning, Neural network Short-term prediction, Traffic parameters

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.