A Novel Method for Diagnosing the Severity of Alzheimer Disease Using Deep Neural Network
- سال انتشار: 1399
- محل انتشار: پنجمین کنفرانس بین المللی پژوهش های کاربردی در علوم و مهندسی
- کد COI اختصاصی: CARSE05_207
- زبان مقاله: انگلیسی
- تعداد مشاهده: 455
نویسندگان
Salman Farsi University of Kazerun, Faculty of Engineering, Department of Information Technology, Taleghani, Kazerun, Iran
Zand Institute of Higher Education, Faculty of Engineering, Department of Computer Engineering, Iman, Shiraz, Iran
چکیده
Alzheimer's disease (AD) is progressive dementia that causes loss of communication between nerve cells in adults. According to forecasts by the World Alzheimer's Association by 2050, the number of people age 65 and older with Alzheimer’s dementia may grow to a projected 13.8 million, barring the development of medical breakthroughs to prevent, slow or cure Alzheimer’s disease. Doctors use a variety of clinical methods to classify Alzheimer's disease one of which is Clinical dementia rating (CDR). The main purpose of this research was to introduce a design of Deep Neural Network architecture for classifying the severity of Alzheimer cases based on the features that were extracted and transform into integer data from the MRI scans that gathered from the open access series of imaging studies (OASIS) by the Washington University Alzheimer’s Disease research center. Our initial experimental results show that the model developed here can reliably detect the severity of Alzheimer’s with accuracy of 75.0%. In terms of Sensitivity, Precision, and F1-score the obtained results 75.0%, 75.3%, and 75.9%. Regarding to obtained results from the experiments and evaluation based on metrics we can demonstrate that the proposed model can be employed to assist professionals in validating their diagnosis, also can be employed via cloud as CAD system for health centers around the globeکلیدواژه ها
Deep Learning, Alzheimer, Clinical Dementia Rating (CDR), Deep Neural Network, Classificationمقالات مرتبط جدید
- Resource Optimization in Large Language Model Deployment Using Reinforcement Learning and Adaptive Software Engineering
- کاربرد یادگیری ماشین در پیشبینی خطاهای نرم افزاری در مراحل اولیه توسعه سیستم های پیچیده
- A review of the application of silver nanoparticles in improving the performance of ultrathin silicon solar cells
- نگرشی برنانو و نقش آن در تصفیه آب در نیروگاه های برق
- The Biomechanical Effect of Knee Flexion Angles on Squat Lifting with a Flat Back Position
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.