Predicting of Iran's potential evapotranspiration by linear regression method
- سال انتشار: 1399
- محل انتشار: دومین کنفرانس محیط زیست، عمران ،معماری و شهرسازی
- کد COI اختصاصی: CECAUD02_088
- زبان مقاله: انگلیسی
- تعداد مشاهده: 517
نویسندگان
Department of Environment Science and Engineering, Arak University, Arak, Iran
Department of Water Science and Engineering, Arak University, Arak, Iran
Department of Water Science and Engineering, Arak University, Arak, Iran
Department of Environment Science and Engineering, Arak University, Arak, Iran
چکیده
Potential evapotranspiration is one of the primary factors controlling the distribution and development of vegetation on a regional scale, especially in dry and semidry climates. Due to the importance of potential evapotranspiration, we survived 41 synoptic stations of the country under future climatic conditions and under current conditions (2017) for 2025, 2050, 2075 and 2100. The methods for calculating potential evapotranspiration according to the type of input data (temperature, relative humidity, wind speed, precipitation, geographical coordinates and altitude of each station) include seven hybrid methods based on Penman, two temperature methods, three hybrid radiation-temperature methods and a radiation method. Then, Agro-ecological Zonation (AEZ) was used to classify the country's stations. Based on the results, the maximum value of ETref in 2017 was at Chabahar study (14.56 mm per day) and Abadan (13.38 mm per day) study and the lowest value of ETref was at Bandar Anzali and Rasht stations (2.08 and 2.67 mm per day) respectively. In 2100, for ultra-arid climate, the average precipitation and ETref will be 121.3 and 4238 mm per year, respectively, which will have a reduction of 3.63 percent in precipitation and 1.81 percent for ETref, respectively, compared to their average in the same period of 2017. The country's average precipitation of arid climate in 2075 was 120 mm per year, the average potential evapotranspiration was 4193 mm per year.کلیدواژه ها
Agroecological Zonation, Aridity Index, Climate Change, Penman Model.مقالات مرتبط جدید
- Assessment of carbon dioxide emissions from ready-mixed concrete production in different strength classes: A case study
- Ultra-High-Performance Concrete (UHPC): Fundamentals, Engineering Applications, and Research Directions
- Crack Detection in Concrete Structures Using Deep Learning: A Review
- A Case Study on Heat of Hydration of a Mass Concrete Foundation Containing Slag Cement
- Major and Strong Earthquake Sequences and the inefficiency of Seismic Hazard Zoning Map: Iran ۲۰۱۷ Mw۷.۴, Turkiye ۲۰۲۳ Mw۷.۸ and Myanmar ۲۰۲۵, Mw۷.۷
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.