مقایسه مدل ARIMA و شبکه عصبی مصنوعی در پیش بینی پس نهاد خسارت در صنعت بیمه اتومبیل
- سال انتشار: 1389
- محل انتشار: چهارمین کنفرانس داده کاوی ایران
- کد COI اختصاصی: IDMC04_114
- زبان مقاله: فارسی
- تعداد مشاهده: 2309
نویسندگان
دانشگاه تهران دانشکده فنی الگوریتم و محاسبات
بیمه پارسیان واحد فناوری اطلاعات
چکیده
تخمین میزان خسارت تعدادی، مبلغی برای بیمه نامه های صادره ای که در اینده به خسارت برخورد خواهند کرد یکی از عوامل مهم در تعیین وضعیت مالی شرکتهای بیمه می باشد در براورد سود و زیان شرکت علاوه بر میزان فروش بیمه نامه و خسارت هایی که تاکنون بوقوع پیوسته است تخمینی از خسارتهایی که در اینده ممکن است به وقوع بپیوندد نیاز می باشد میزانخسارت هایی که براساس فروش فعلی شرکت رد اینده با آن روبرو خواهد شد را اصطلاحا پس نهاد خسارت می نامیم برایمدلسازی پس نهاد خسارت دراین مقاله از سریهای زمانی استفاده شده است که می توند نشاندهنده الگوی تغییر فروش و خسارت در فواصل زمانی معین باشد کارایی مدل اماری ARIMA با روش شبکه های عصبی مصنوعی در سریهای زمانی دراین مقاله مورد مقایسه قرارگرفته است و نشان داده می شود که شبکه های عصبی می توانند در مقابل مدل اماری ARIMA دارای دقت پیش بینی زیادتری باشد.کلیدواژه ها
پس نهاد خسارت، داده کاوی، شبکه های عصبی، مدل ARIMA، بیمه اتومبیلاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.