طراحی مدلی جهت پیش بینی بازده شاخص کل بورس اوراق بهادار(با تاکید بر مدل های ترکیبی شبکه یادگیری عمیق و مدل های خانواده GARCH)

  • سال انتشار: 1399
  • محل انتشار: مجله مهندسی مالی و مدیریت اوراق بهادار، دوره: 11، شماره: 42
  • کد COI اختصاصی: JR_FEJ-11-42_006
  • زبان مقاله: فارسی
  • تعداد مشاهده: 1033
دانلود فایل این مقاله

نویسندگان

مهدی ذوالفقاری

گروه علوم اقتصادی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس،تهران، ایران

بهرام سحابی

گروه علوم اقتصادی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

محمد جواد بختیاران

گروه علوم اقتصادی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در سال های اخیر، توسعه ی پردازنده های کامپیوتری موجب معرفی الگوریتم های جدیدی برای پیش بینی دادههای مالی شده است که یکی از این الگوریتم ها، یادگیری ماشین (Machine Learning) است. از اینرو در پژوهش حاضر به معرفی یک مدل ترکیبی از شبکه یادگیری عمیق (Deep Learning) و مدل های منتخب خانواده GARCH جهت پیش بینی کوتاه مدت بازدهی روزانه شاخص کل بورس اوراق بهادار تهران پرداخته می شود. مهمترین ویژگی شبکه یادگیری عمیق در این است که بدون محدود بودن به مدل های معین، می تواند خود را با نوسانات متغیرهای بازار هماهنگ و تعدیل نماید. در این پژوهش از میان مدل های شبکه یادگیری عمیق، شبکه عصبی بازگشتی مبتنی بر حافظه کوتاه مدت و بلندمدت (RNN-LSTM) انتخاب و از مدل های دارای حافظه کوتاه مدت GARCH و EGARCH در ساختار آن استفاده می شود. همچنین دو متغیر مستقل قیمت نفت و نرخ دلار در ساختار مدل ترکیبی، کمک فراوانی به آن در پیش بینی دقیقتر داده های مالی می کند. نتایج تحقیق نشان می دهد که مدلهای ترکیبی دقت پیش بینی بالاتری نسبت به مدل های تکی دارند. همچنین براساس معیارهای ارزیابی خطای پیش بینی RMSE و MAPE، مدل RNN-LSTM-EGARCH برپایه توزیع GED دارای خطای پیش بینی کمتری نسبت به 23 مدل دیگر دارد. در این راستا، معیار بررسی صحت پیش بینی دیبولد-ماریانو (DM) نیز یافته های فوق را تایید میکند.

کلیدواژه ها

شاخص بورس اوراق بهادار, پیش بینی, خانواده GARCH, شبکه یادگیری عمیق

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.