CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Applying finite point method in solidification modeling during continuous casting process

عنوان مقاله: Applying finite point method in solidification modeling during continuous casting process
شناسه ملی مقاله: ADSTEEL01_006
منتشر شده در اولین همایش ملی فولادهای پیشرفته در سال 1389
مشخصات نویسندگان مقاله:

Mostafa Alizadeh - Department of Materials Science and Engineering, International Center for Science, High Technology & Environmental Sciences, Kerman, Iran
Seyyed Ahmad Jenabali Jahromi - Department of Materials Science and engineering, Shiraz University, Shiraz Iran
Sayyed Behrouz Nasihatkon

خلاصه مقاله:
In the present work a meshless method called Finite Point Method (FPM) is developed to simulate the solidification process of continuously cast steel bloom in both primary and secondary cooling region. The method is based on the use of a weighted least-square interpolation procedure. A transverse slice of bloom as it moves with casting speed is considered as computational domain and two dimensional heat transfer equation is solved in the computational domain. The present work is verified by the comparison of the surface temperature simulated by both FPM (as the present method) and finite volume method (FVM) as a usual method. Furthermore the solidified shell thickness simulated by the present FPM is compared with the solidified shell measured on a breakout bloom. In the secondary cooling region, the surface temperatures simulated by the FVM and measured by the thermovision machine are applied to validate the surface temperature simulated by the present FPM. The results reveal that the present FPM could be used successfully for the thermal analysis of the steel bloom to determine the temperature field and solidified shell thickness.

کلمات کلیدی:
numerical simulation, continuous casting, meshless, finite point, solidification

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/103087/