Prediction of suction caissons behavior in cohesive soils using computational intelligence methods

  • سال انتشار: 1399
  • محل انتشار: مجله بین المللی معدن و مهندسی زمین، دوره: 54، شماره: 2
  • کد COI اختصاصی: JR_IJMGE-54-2_003
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 404
دانلود فایل این مقاله

نویسندگان

Hadi Fattahi

Department of Earth Sciences Engineering, Arak University of Technology, Arak, Iran

Hosnie Nazari

Department of Earth Sciences Engineering, Arak University of Technology, Arak, Iran

چکیده

Compared to drag anchors, suction caissons (Q) in clays often provide a cost-effective alternative for jacket structures, catenary, tension leg moorings, and taut leg. In this research, two computational approaches are proposed for predicting the uplift capacity of Q in clays. The proposed approaches are based on the combinations of adaptive network-based fuzzy inference system (ANFIS) models (ANFIS-subtractive clustering (ANFIS-SC) and ANFIS-fuzzy c-means (ANFIS-FC)) with metaheuristic techniques (ant colony optimization (ACO) or particle swarm optimization (PSO)). In these approaches, the PSO and ACO algorithms are employed to enhance the accuracy of ANFIS models. In order to develop hybrid models, a comprehensive database from open-source literature is used to train and test the proposed models. In these models, d (diameter of caisson), L (embedded length), D (depth), Su (undrained shear strength of soil), θ (inclined angle), and Tk (load rate parameter) were used as the input parameters. The performance of all models was evaluated by comparing performance indexes, i.e., means squared error and squared correlation coefficient. As a result, PSO and ACO can be used as reliable algorithms to enhance the accuracy of ANFIS models. Moreover, it was found that the ANFIS– subtractive clustering-ACO model provides better results in comparison with other developed hybrid models.

کلیدواژه ها

ANFIS, metaheuristic techniques, subtractive clustering method, fuzzy c-means clustering method, suction caissons capacity

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.