An adaptive-network-based fuzzy inference system (ANFIS) for prediction of characteristics in the Mechanics of Composite Materials

  • سال انتشار: 1398
  • محل انتشار: اولین کنفرانس بین المللی مکانیک، ساخت، صنایع و مهندسی عمران
  • کد COI اختصاصی: MMICONF01_006
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 717
دانلود فایل این مقاله

نویسندگان

Hadi Mehdipour

Department of Mechanical Engineering, Faculty of Shahid Chamran, Kerman Branch, Technical and Vocational University (TVU), Kerman, Iran

چکیده

Lack of actual amount of principal factors in the composite materials filed results in imprecision and uncertainty. Use of different approaches for analyzing and solving the engineering problems depends on nature and amount of uncertainty of problems.When the information of the system is characterized through linguistic terms in such situations, the fuzzy theory can be used to determine the structural response in the sense of evaluation of its upper and lower bounds, respectively. We can obtain a more strong fuzzy system by combining neural network techniques and fuzzy logic called Adaptive Fuzzy Systems (AFS).In this article, we propose a new neuro-fuzzy technique for the composite materials, in order to find an optimal volume fraction when Hooke’s law is utilized in a unidirectional lamina. We devised an Adaptive Network-based Fuzzy Inference System (ANFIS) as an estimator system for composite materials science. To construct a neuro-fuzzy system has utilized a Takagi-Sugeno-Kang type fuzzy system. We show that the ANFIS is more accurate rather than a rule of mixture theory in the estimation of empirical data especially in uncertain situations. In order to evaluate the proposed approach, we perform experiments on a dataset of empirical data through MATLAB software. Wecompared the ability of the proposed approach with the rule of mixtures approach and illustrated that ANFIS is more accurate to estimate the empirical data.

کلیدواژه ها

Composite materials; ANFIS; Fuzzy logic; rule of mixture

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.