ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

راهکارهایی مبتنی بر داده کاوی با مقایسه عملکرد درخت تصمیم CART شبکه ی عصبی MLP برای پیش بینی سکته قلبی

تعداد صفحات: 19 | تعداد نمایش خلاصه: 37 | نظرات: 0
سال انتشار: 1398
کد COI مقاله: RSETCONF01_005
زبان مقاله: فارسی
(فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.

با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید.در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.

لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.

برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 19 صفحه است در اختیار داشته باشید.

قیمت این مقاله : 3,000 تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله راهکارهایی مبتنی بر داده کاوی با مقایسه عملکرد درخت تصمیم CART شبکه ی عصبی MLP برای پیش بینی سکته قلبی

رضوان متین فرد - دانشکده مهندسی کامپیوتر، موسسه آموزش عالی غیرانتفاعی یاسین، بروجرد، ایران
صبا تمیزی - دانشکده مهندسی صنایع و برنامه ریزی سیستمها، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده مقاله:

در سال های اخیر استفاده از روش های داده کاوی روی حجم زیادی از داده ها با هدف تولید مدل ها و الگوهای پیش بینی کننده در حیطه های متعدد پزشکی رواج یافته است. با توجه به شیوع و سهمی که بیماری سکته قلبی در مرگ و میر انسان ها دارند، لذا پیش بینی صحیح وضعیت بیمار جهت به حداقل رساندن استفاده از روش های تهاجمی مثل آنژیوگرافی و...دارای اهمیت زیادی است، استفاده از تکنیک های داده کاوی برای پیش بینی سریع ابتلا به بیماری، کاهش عوارض ناشی ازآن وهزینه های کمتر بسیار کمک کننده است. این پژوهش با هدف استفاده از نتایج حاصل از داده کاوی جهت پیش بینی دقیق تر بیماری قلبی، تصمیم گیری موثرتر و بهتر درمان بیماران و کاهش هزینه ها صورت گرفته است. پژوهش حاضر از نوع کاربردی و توصیفی می باشد که در آن اطلاعات مربوط به 300 بیمار از مخزن انبار در سایت UCI استخراج شده و شامل 14 متغیر است. در این پژوهش از مدل شبکه ی عصبی مصنوعی و درخت تصمیم CART برای پیش بینی مبتلا بودن به سکته قلبی استفاده شده است و دقت و صحت و میزان خطا در هر دو روش بررسی گردید. براساس نتایج به دست آمده مشاهده می شود مدل شبکه ی عصبی با ساختار پرسپترون چند لایه با دقتی برابر 91/97 درصد بر مدل درخت تصمیم CART با دقتی برابر 75/56 درصد در پیش بینی ابتلا به سکته قلبی برتری دارد.

کلیدواژه ها:

پيش بيني، سكته قلبي، درخت تصميم گيري CART، شبكه عصبي مصنوعي

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1006456/

کد COI مقاله: RSETCONF01_005

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
متین فرد، رضوان و تمیزی، صبا،1398،راهکارهایی مبتنی بر داده کاوی با مقایسه عملکرد درخت تصمیم CART شبکه ی عصبی MLP برای پیش بینی سکته قلبی،اولین کنفرانس بین المللی تحقیقات پیشرفته در علوم، مهندسی و فناوری،تهران،،،https://civilica.com/doc/1006456

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1398، متین فرد، رضوان؛ صبا تمیزی)
برای بار دوم به بعد: (1398، متین فرد؛ تمیزی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی