A hybrid mining model based on Artificial Neural Networks, Support Vector Machine and Bayesian for credit scoring

سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,211

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

SASTECH05_183

تاریخ نمایه سازی: 22 مرداد 1391

چکیده مقاله:

In recent years, credit scoring is becoming one of the most important topics in the financial field. In consumer credit markets, lending decisions are usually represented as a set of classification problems. In this Paper, we have proposed a hybrid mining model for credit scoring, based on Artificial Neural Networks, Support Vector Machine and Naïve Bayesian to improve the accuracy of credit scoring classification task. To make these basic classifiers as an ensemble model, we have used majority voting technique to improve the prediction accuracy of existing credit scoring models. In order to approve the capability of our model in the field of credit scoring, Australian credit real dataset of UCI machine learning database repository has been applied. Finally we conduct a comparative assessment for the performance measuring of these methods, with three basic learners (Artificial Neural Networks, Support Vector Machine and Naïve Bayesian). Our findings lead us to believe that this hybrid method may provide better performance in the field of credit scoring.

نویسندگان

M Siami

Iran University of Science and Technology, Tehran, Iran;

M.R Gholamian

Iran University of Science and Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Chen.F and Li.F, (2010) "Combination of feature selection approaches with ...
  • Chen.W, Ma.C, and Ma.L (2009)"Mining the customer credit using hybrid ...
  • Hsieh N.-C., Hung L.-P (2010) "A data driven ensemble classifier ...
  • Hsieh.N.C (2005) "Hybrid mining approach in the design of credit ...
  • Huang.C.L, Chen.M.C, Wang.C.. (2007)"credit scoring with datamining approach based On ...
  • Hung C., Chen J.-H. (2009) _ selective ensemble based On ...
  • Kononenko, I., (1991). "Semi-naive Bayesian classifier. In: Proceedings of European ...
  • Langley, P., Sage, _ (1994). "Induction of selective Bayesian classifiers". ...
  • _ SASTech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14. ...
  • Leea.T, Chiub _ Ch. Ch, Y. -Ch. Chouc, Ch.. Lud ...
  • Nanni.L, Lumini.A (2009)"An experimental comparison of ensemble of classifiers for ...
  • On.C.S, Jeng.J, Huang, G. HshiungTzeng (2005)"Building credit scoring model using ...
  • Ouali A., Ramdane Cherif A., Krebs M.-O(2006) "Data mining based ...
  • Thomas.L.C (2000) _ survey of credit and behavioural scoring: forecasting ...
  • Tsai.Ch.F, Wu.J.W (2008)"Using neural network ensembles for bankruptcy prediction and ...
  • TunLi.S , Shiue.W , Huang.M.H (2006)"The evaluation of consumer loans ...
  • Wang.G , Hao.J , Ma.J _ Jiang.H (2011) _ comparative ...
  • West.D (2000) "Neural network credt scoring models" Computers and operation ...
  • Witten.H and Frank.E, Data Mining (2005) "Practical Machine Learning Tools ...
  • Zhang, D., X. Zhou, et al (2010)، 0Vertical bagging decision ...
  • نمایش کامل مراجع