Integrating Genetic Algorithm and Neural Network to Optimize Statistical Problems
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 678
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_UJRSET-2-2_006
تاریخ نمایه سازی: 9 اسفند 1393
چکیده مقاله:
Many real word product or process design problems involve multi response problems which have stochastic nature. This paper proposes a hybrid approach involved genetic algorithm and artificial neural network methodology to solve these problems. Usually, in these problems the relationship between responses and independent variables is indeterminate; therefore to generate required input data we are interested to use a method to approximate this relationship. Artificial Neural Network (ANN) is a methodology employed in this research to evaluate linear and nonlinear relationship between variables. We model the statistical multi response problem by three different multi objective decision making (MODM) techniques. Moreover, fourdifferent genetic algorithms are proposed in which four pairwise multiple comparisons statistical tests are used to control the random nature of the problem. Finally, the performance of the proposed methodology is demonstrated using a tow way analysis of variance (ANOVA) for a numerical example and the results are compared statistically..
کلیدواژه ها:
multi-response/optimization problems/Genetic algorithm ، Neural/networks ، Multi objective/decision making ، Statistical pairwise multiple comparison
نویسندگان
mahsa mesgaran
Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Theran, Iran M.Sc
seyed hamid reza Pasandideh
Ph.D Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Theran, Iran